DOI QR코드

DOI QR Code

Effects of Caprylic Acid and Cyclodextrin Complex on In vitro Fermentation Characteristics and Methane Production

Caprylic Acid와 Cyclodextrin 복합물이 In vitro 반추위 발효성상 및 메탄 생성에 미치는 영향

  • Kim, K.H. (National Institute of Animal Science, RDA) ;
  • Seol, Y.J. (National Institute of Animal Science, RDA) ;
  • Lee, S.S. (Department of Dairy science, College of Agriculture and Science, Gyeong Sang National University) ;
  • Oh, Y.G. (National Institute of Animal Science, RDA) ;
  • Nam, I.S. (National Institute of Animal Science, RDA) ;
  • Kim, D.H. (National Institute of Animal Science, RDA) ;
  • Choi, C.W. (National Institute of Animal Science, RDA)
  • 김경훈 (농촌진흥청 축산과학원) ;
  • 설용주 (농촌진흥청 축산과학원) ;
  • 이성실 (경상대학교 농생명학부 낙농학전공) ;
  • 오영균 (농촌진흥청 축산과학원) ;
  • 남인식 (농촌진흥청 축산과학원) ;
  • 김도형 (농촌진흥청 축산과학원) ;
  • 최창원 (농촌진흥청 축산과학원)
  • Published : 2007.10.31

Abstract

This study was conducted to evaluate the effects of dietary addition of caprylic acid(CA)-cyclodextrin (CD) complex on in vitro fermentation characteristics, total gas and methane production. Experiment was done with six treatment groups; 1) no CA-CD complex(control), 2) CA 20 mg(T1), 3) CD 830 mg(T2), 4) CA-CD complex 425 mg(T3), CA-CD complex 850mg(T4), CA-CD complex 1,700 mg(T5). Ruminal pH, ammonia and total VFA concentrations of T2, T3, T4 and T5 were lower(P<0.05) than those of control and T1 for the 12h incubation. The increase in molar percentage of propionate was observed in T4 and T5 compared with control and T2 for the 8h incubation(P<0.05), however, the ratio of acetate to propionate was unchanged in all treatments. Total gas of T1 was lower than that of control, but T2, T3, T4 and T5 were higher compared with control for 12h incubation(P<0.05). If the methane ratio (as %) to total gas for all treatments was compared, T3, T4 and T5(CA-CD supplemented groups) averaged 2.7% whereas control, T1 and T2 showed 3.4, 2.8 and 5.1%, respectively. Therefore, according to these results, it might be concluded that supplementation of CA-CD complex could reduce methane production without disrupting ruminal fermentation.

본 연구에서는 caprylic acid와 cyclodextrin과의 complex(CA-CD complex)의 첨가수준이 in vitro 반추위 발효 성상과 메탄 생성에 미치는 영향을 알아보고자 하였다. CA-CD complex 무첨가구를 대조구로 설정 하였으며, 처리구로는 CA 20mg 단독 첨가구(T1), CD 830mg 단독 첨가구(T2), CA-CD complex 425mg 첨가구(T3, CA 함량 10mg), CA-CD complex 850mg 첨가구(T4, CA 함량 20mg), CA-CD complex 1700 mg 첨가구(T5, CA 함량 40mg)이며, 3반복으로 4, 8, 12시간의 배양 실험을 수행하였다. 모든 시험구에서 배양 12시간까지 pH가 지속적으로 감소하였다. 특히, 배양 8시간 후부터 T2, T3, T4, T5 처리구에서 대조구보다 유의적으로 감소하였다(P<0.05). Total VFA 농도는 대조구에 비해 T2, T3, T4, T5구들이 8시간과 12시간에서 유의적(P<0.05)으로 감소하였다. Propionate 농도는 배양 8시간에서만 다른 처리구보다 T4, T5 처리구가 유의적(P<0.05)으로 높게 나타났다. Acetate:Propionate(A/P) 비율은 모든 배양시간에서 처리구간 유의적인 차이가 없었다. 암모니아 농도는 대조구에 비해 T2, T3, T4, T5 처리구에서 배양 4시간부터 대조구보다 암모니아 농도가 유의적(P<0.05)으로 감소하였다. Total gas는 T1구에서 대조구보다 유의적(P< 0.05)인 감소가 있었으나, T2, T3, T4, T5 처리구에서는 대조구에 비하여 12시간에서 유의적(P<0.05)으로 증가하였다. Total gas 발생량에 대한 메탄 비율(%)은 12시간 배양시간에서 대조구는 3.4%이었지만, 메탄 발생량이 가장 적었던 T1구는 2.8%, 메탄 발생량이 가장 많았던 T2구는 5.1%, 그리고 T3, T4, T5구는 평균 2.7%로 T1구와 통계적 차이가 없었다. 따라서 CA-CD complex를 이용하면, 반추위내 발효에 부정적 영향 없이 메탄을 감소시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Ajisaka, N., Mohammed, N., Hara, K., Mikumi, K., Hara, K., Hashimoto, Kumata, T., Kanda, S. and Itabashi, H. 2002. Effects of medium-chain fatty acid-cyclodextrin complexes on ruminal methane production in vitro. Anim. Sci. J. 73:479-484 https://doi.org/10.1046/j.1344-3941.2002.00066.x
  2. Beauchemin, K. A. and MeGinn, S. M. 2006. Methane emission from beef cattle: Effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci. 84:1489-1496
  3. Czerkawski, J. W., Blaxter, K. L. and Wainman, F. W. 1966. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20:349-362 https://doi.org/10.1079/BJN19660035
  4. Chaney, A. L. and Marbach, E. P. 1962. Modification reagents for determination of urea and ammonia. Clin. Chem. 8:130-132
  5. Dochene, D., Bochot, A., Yu, S. C., Pepin, C. and Seiller, M. 2003. Cyclodextrin and emulsion. Int. J. Pharm. 266:85-90 https://doi.org/10.1016/S0378-5173(03)00384-3
  6. Erwin, E. S., Marco D. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1770 https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  7. Frumholtz, P. P., Newbold, C. J. and Wallace, R. J. 1989. Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). J. Agric. Sci. 113:169-172 https://doi.org/10.1017/S002185960008672X
  8. IPCC. 1996. Greenhouse gas inventory revised methodology. guidelines for national greenhouse gas inventories. Vol. 3. Bracknell. UK
  9. Johnson, K. A. and Johnson, D. E. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492
  10. Lila Z. A., Mohammed, N., Kanda, S., Kamada, T. and Itabashi, H. 2003. Effect of ${\alpha}$-cyclodextrin allyl isothiocyanate on ruminal microbial methane production in vitro. Anim. Sci. J. 74:321-326 https://doi.org/10.1046/j.1344-3941.2003.00123.x
  11. Lila, Z. A., Mohammed, N., Tatsuoka (Ajisaka), N., Kanda, S., Kamada, T., Kurokawa, Y. and Itabashi, H. 2004. Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. Anim. Sci. J. 75:15-22 https://doi.org/10.1111/j.1740-0929.2004.00149.x
  12. Machmuller, A. 2006. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosy. Environ. 112:107-114 https://doi.org/10.1016/j.agee.2005.08.010
  13. Martin Del Valle, E. M. 2004. Cyclodextrin and their uses: a review. Proc. Biochem. 39:1033-1046
  14. Miyazaki, K., Hino, T. and Itabashi, H. 1989. Changes caused by ethanol in fermentation pattern and membrane fatty acid composition of rumen microorganisms. Jpn. J. Zootech Sci. 60:776-782
  15. Mohammed, N. and Lila, Z. A. 2004. Effects of cyclodextrin-iodopropane complex on methane production, ruminal fermentation and microbes, digestibility and blood metabolites in steers. Anim. Sci. J. 75:131-137 https://doi.org/10.1111/j.1740-0929.2004.00167.x
  16. Newbold, C. J., Lassalas, B. and Jouany, J. P. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234 https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  17. SAS User's Guide: Statistics, Version 9.1 Edition. 2002. SAS Inst., Inc., Cary, NC
  18. Soliva, C. R., Meile, L., Hindrichsen, I. K., Kreuzer, M. and Machmuller, A. 2004. Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release. Anaerbe. 10:260-276
  19. The Govemment of the Republic of Korea. 2003. Second National Communication of the Republic of Korea Under the United Nations Framework Convention on Climate Change. http://www.keei.re.kr
  20. Van Nevel, C. J. and Demeyer, D. I. 1992. Influence of antibiotics and a deaminase inhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes in vitro. Anim. Feed Sci. Technol. 37:21-31 https://doi.org/10.1016/0377-8401(92)90117-O