DOI QR코드

DOI QR Code

LES for Turbulent Channel Flow with Blowing Velocity

분류유동이 있는 채널 난류유동의 LES 해석

  • 나양 (건국대학교 기계공학과) ;
  • 이창진 (건국대학교 항공우주공학과)
  • Published : 2007.08.31

Abstract

Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test with PMMA/GOX in the hybrid rocket motor. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intented to simulate the process of fuel vaporization. LES technique was implemented to investigate both the flow characteristics near fuel surface and the subsequent evolution of turbulence modified by the wall blowing. Simple channel geometry instead of circular grain configuration was used for the investigation without chemical reactions in order to allow for a focused examination on the near-wall behavior at the Reynolds number of 22,500. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

최근의 실험 결과를 통해 하이브리드 로켓 연료의 표면에 연소가 진행되지 않은 채 남아있는 고립된 부분들이 존재함을 확인하였다. 이러한 불규칙적인 spot은 연료의 기화로 인한 분출유동(blowing velocity)과 산화제의 유동 사이에서 발생하는 경계층 교란에 의한 현상인 것으로 여겨진다. 본 연구에서는 22,500의 높은 Reynolds수와 벽면분출 현상을 효과적으로 처리할 수 있도록 LES 기법을 이용하여, 연료 표면 근처의 난류 유동 및 열전달 특성을 해석하였다. 비록 원형 그레인 아닌 단순채널 형상을 고려하였으며 화학반응이 없는 경우의 난류유동을 해석하였으나, 연료 표면에서 발생하는 불규칙한 spot의 발생은 경계층과 분출되는 유동이 상호 간섭함으로써 난류구조들의 기구학적 특성을 변경시키기 때문인 것으로 추측되는 결과들을 얻을 수 있었다.

Keywords

References

  1. Changjin Lee, Yang Na, Young-Choon Hwang and Sung-Taick Lee, Turbulent flow in the helical grain of hybrid rocket fuel, AIAA-2006-4344, 41st AIAA Joint propulsion meeting, Sacramento, Ca., 2006
  2. Brian Evans, Nicholas A. Favorite, and Kenneth K.Kuo. 'Oxidizer-Type and Aluminum-Particle Addition Effects on Soild-Fuel Burning Behavior', AIAA paper 06-4676, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006
  3. 구원모, 이창친, 산화제 난류 유동 변화에 대한 하이브리드 로켓 연소 특성, 한국추진공학회 춘계학술대회논문,2007
  4. K.H Shin, C. Lee, S. Y. Chang, and J. Y. Koo, 'The enhancement of regression rate of hybrid rocket fuel by various method', AIAA 2005-0359, Reno, 2005
  5. 황영춘, 이창진 '산화제 유업조건에 따른 하이브라드 로켓 연료의 연소율 향상', 한국추진공학회 추계학술대회 논문집 pp.1-4. 2005
  6. Zang, Y., Street, R.L. and Koseff, J.R, 'A Dynamic Mixed Sugbrid-Scale Model and Itsto Turbulent Recirculating Flows', Phys. Fluids A, Vol. 5 No. 12, pp. 3186-3195., 1993 https://doi.org/10.1063/1.858675
  7. Spalart, P.R, Moser, R.D. and Rogers, M., 'Spectral Methods for the Navier-Stokes eqn with One Infinite and Two Periodic'. Comput. Phys., Vol. 96, pp. 297 - 324, 1991 https://doi.org/10.1016/0021-9991(91)90238-G
  8. Leonard, B.P., 'A Stable and Accurate Modeling Procedure Based on Quadratic Upstream Interpolation', Comput. Methods, Appl. Mech. Eng., Vol. 19, pp. 59-98, 1979 https://doi.org/10.1016/0045-7825(79)90034-3
  9. Salvetti, M.V. and Banergee, S., 'A Priori Tests of a New Dynamic Subgrid-Scalefor Finite Difference Large Eddy', Phys. Fluids A, Vol. 7, pp. 2831-2847, 1995 https://doi.org/10.1063/1.868779

Cited by

  1. Analysis on the Modification of Near-wall Turbulent Characteristics of Temperature Field in a Channel imposed with Linearly Increasing Wall Disturbance vol.17, pp.5, 2013, https://doi.org/10.6108/KSPE.2013.17.5.101