Pre-and Post-Curing of Readout Layer of Super Resolution Disc

Sun-Hee Kim^{*}, Keumcheol Kwak[†], Changho Lee^{*} and Kichang Song^{*}

Abstract

재생층이 상변화물질로 이루어진 초해상 광디스크에 있어서, 기록 전과 후에 thermal curing 을 실시하 여 신호품질과 재생안정성이 크게 향상되었다. Pre-curing 으로 수천 회 이하에서 나타나는 short-term stability 가 향상되었고, post-curing 한 후 mid-term stability 가 향상되었다. 그리고, pre- and post-curing 후 noise level 은 전반적으로 1~2dB 가 낮아졌고, CNR 은 2~3dB, jitter 는 2~3% 가 향상되었다.

Key Words : Super resolution disc, readout layer, noise level, readout stability, pre-curing, post-curing

1. Introduction

시간이 지남에 따라 개인이나 기업에서 취급하 는 정보의 양이 극도로 증가하였고 그에 대응하는 25GB(Blu-ray disc) 혹은 15GB(HD-DVD) 급의 대용 량 정장 매체가 상용화 되었다. 그리고, 최근 들어 그 이상의 용량을 가지는 차세대 광 메모리 기술 들이 활발히 연구되고 있다. 특히 1998 년에 J. Tominaga 박사가 "super-RENS" 기술을 발표한 이 후로 super-RENS 기술이 많은 관심을 받아왔다 [1]. Super-RENS 기술은 기존 pick-up 시스템을 그 대로 사용하고 디스크에 재생층만을 삽입하여 용 량을 100GB 에서 1TB 까지 늘릴 수 있는 기술로 NFR(Near Field recording technology) 이나 multilayer 디스크 기술과 비교하여 많은 장점이 있는 것으로 알려져 왔다.

Super-RENS 기술 연구 초반에는 bubble type 의 기록 층(PtO_x, AgO_x)을 중심으로 연구되었으나 [2~3], 최근 들어 metal/Si [4], BaTiO_x [5], BiO_x 등의 기록 물질도 보고되고 있다.

이들 초해상 WORM 형 디스크의 기록 층은 크 게 one layer type 과 bi-layer type 로 나눌 수 있는데 one layer type 은 bubble 형태의 마크를 기록하는 경우이고 bi-layer type 은 2 가지 이상의 물질의 혼 합에 의한 광학 특성을 변화를 이용해 기록하는 경우이다. One layer type 은 나노 크기의 금속산화 물 또는 질화물 입자(예, Pt, Ag)가 특정온도 이상

* LG Electronics Institute of Technology (LG-Elite)

정보저장시스템학회논문집/제 3 권 제 3 호,2007년 9 월

에서 나노 입자와 산소로 분리되면서 만들어 내는 bubble 을 마크로 이용한다.

초해상디스크의 재생층으로는 상변화재료 (GeSbTe, AgInSbTe, Sb₃Te, etc.)가 많이 연구되어 왔 으나 [1-5] 최근 들어 반도체 재료 [6-7], 무기재료 (ZnO), 및 열전재료(PbTe) 등 다양한 재료들이 연 구되고 있다.

초해상 디스크의 재생층으로 상변화재료를 사용 할 경우 이들 물질들이 다른 광디스크 매체에서 기록 층으로 사용되거나 사용 가능한 물질이기 때 문에 degradation 관점에서 기록 전과 기록 후의 재 생층의 phase 가 중요한 문제로 나타나게 된다. 재 생층이 as-deposited 상태인 초해상 디스크에 기록 후 반복 재생을 할 경우 두 가지 원인에 의해서 재생층의 degradation 이 일어난다. 그 첫 번째 이 유는 재생층의 상이 점차 변화하는 것이고, 두 번 째 이유는 유전체층으로 ZnS-SiO₂ 를 사용했을 때 S 의 재생층으로의 유입으로 인한 것이다. 소 위 short-term 과 mid-term degradation 이라 불리는 경우는 전자의 경우이고, long-term degradation 은 후자의 경우이다.

따라서, 본 연구에서는 기록 전 pre-curing 과 기 록 후 post-curing 을 통해 기록 전 후의 재생층의 phase 를 균일화하여 degradation 을 방지하였고 그 결과로 CNR, jitter 향상과 재생 안정성 또한 확보 하였다.

2. Experimental Procedure

2.1 Fabrication of super resolution disc

박막 구조는 그림 1 에서 보는 바와 같이 substrate/reflective-layer/ZnS-SiO₂/metal/Si /ZnS-SiO₂ /readout-layer/ZnS-SiO₂/cover-layer 순서로 적층 하

[†] LG Electronics Institute of Technology (LG-Elite) E-mail : kkwak95@lge.com TEL : (02)526-4577

였다. 모든 층은 magnetron sputtering 으로 이루어 졌고, 기록 층으로 metal/Si 을 사용하였다. 기록 층에서 metal 층은 마주 접해 있는 Si 층과 반응 성이 없어야 하고 열을 잘 빼주어야 하기 때문에 귀금속 물질인 Ag 를 base 물질로 선택하였고, 기 록 온도를 낮추고 열 조절을 용이하게 하기 위해 Ag 와 다른 metal 을 co-sputtering 하였다. Metal 과 Si 의 두께 비율은 기록을 했을 때 modulation 이 극대화 되는 두께를 선택하였다. 기판은 1.1mm 두께에 track pitch 가 0.32 / CP polycarbonate 를 사 용하였고 cover layer 는 0.1mm 의 polycarbonate sheet 를 사용하였다.

2.2 Thermal curing

Pre-curing 은 초기화 장비로 선속도와 레이저의 revolution 밀도를 달리하여 각각의 파워에 대해서 초기화하여 적정 초기화 조건을 찾아내었다.

Post-curing 은 최적의 pre-curing 을 실시한 후 연속 기록하여 dynamic tester 에서 erase 파워를 조절하면 서 실험하였다.

모든 기록 및 재생 특성은 ODU-1000 (Pulstec;

Fig. 1 Film structure of super resolution WORM type disc

laser wavelength(λ): 405nm, numerical aperture (NA): 0.85)로 이루어졌고 속도는 2.46m/s, transfer clock 은 66MHz 이였다. CNR 과 LFN 은 spectrum analyzer (Agilent Technology, 4395A REV 1.04)를 이용하여 측 정하였다.

Fig. 2 Schematic of as-deposited state and state of after pre-curing

Fig. 3 Schematic of readout layer and recording layer before and after post-curing

Fig. 4 CNR change vs. readout cycles of 75nm mark(2T-2T) with variation of precuring power

Fig. 5 Image of spectrum analyzer of 75nm mark(2T-2T);(a)before pre-curing, and (b)after pre-curing

3. Results and Discussions

3.1 Pre-curing

박막의 적층은 sputtering 에 의해서 이루어지고 as-deposited 상태의 금속 박막은 대부분 amorphous phase 이거나 polycrystalline phase, 혹은 polycrystalline phase 와 amorphous phase 가 섞여 있 는 상태가 된다. 현재 초해상 디스크에서 가장 많 이 연구되고 있는 재생층은 phase change(GeSbTe, AgInSbTe, Sb₃Te, etc) 물질로 이들 물질은 asdeposited 상태에서 대부분 amorphous phase 이거나 amorphous 와 crystalline phase 의 혼합상이고 특정 조성에서 crystalline phase 를 이루기도 한다. 여기 서, 재생층의 phase 는 매우 중요한데, 그 이유는 다른 광디스크 분야에서 기록 층으로 사용하고 있 거나 사용 가능한 물질이기 때문이다. 즉, 초해상 디스크에 이들 물질을 재생층으로 사용할 경우, 기록시 재생층도 동시에 기록이 된다는 것을 의미 한다.

재생층이 as-deposited 상태에서 기록이 된다면 그림 2 에서 보는 바와 같이 기록이 되지 않은 재 생층 부분은 amorphous 혹은 혼합상을 형성하고 있어 재생 시 crystalline phase 가 noise 를 일으키는 원인이 될 수 있고, amorphous phase 는 약한 열에 도 crystalline phase 로 상이 쉽게 변화하기 때문에 디스크의 반사도가 변하게 된다. 뿐만 아니라 amorphous phase 가 무른 형태이기 때문에 물질의 반복적인 melting & cooling 에 의해서 in-groove 로 의 물질의 이동이 일어나기 쉬워지고 원래의 조성 비에서 벗어난 조성으로 segregation 이 일어날 수 있게 된다.

따라서 본 실험에서는 기록 전 재생층의 precuring 을 통해 재생층의 결정화를 꾀하고 디스크 전체에 걸쳐 균일한 상을 형성함으로써 위에서 설 명한 문제점을 제거하고자 하였다.

Pre-curing 후 디스크의 반사도가 변화하기 때문 에 디스크 설계 시 pre-curing 후의 반사도를 고려 하는 것이 중요하다.

그림 4 는 초기화 장비를 이용하여 각각 0, 150, 240, 390mW의 파워로 초기화 한 후 75nm (2T-2T) 를 기록한 후 반복 재생하여 재생 안정성을 살펴 본 결과이다. 초기화를 하지 않은 경우에는 시간 에 따라, 소위 short-term degradation 이라 불리 우는 초기 CNR 이 감소하는 속도가 가장 빠르며 초기 화를 거친 경우는 그 정도가 작아지고 390mW 에 서는 3000 회까지 CNR 이 감소하지 않았다. 그러 나, 수천 회 이상의 mid-term degradation 은 여전히 나타나고 있다.

그림 5 는 pre-curing 한 디스크에 기록을 한 후 spectrum analyzer 로 noise level 를 측정한 것이다. Pre-curing 을 한 후가 하기 전보다 noise level 이 전 반적으로 1~2dB 정도 낮아졌음을 알 수 있다.

3.2 Post-curing

Pre-curing 과정을 시행했을 지라도 rewritabletype 디스크의 기록 층이 기록되는 원리와 똑같이 초해상 디스크는 기록시 재생층에 기록 마크가 남 게 된다. 이 재생층의 기록 마크의 크기와 모양은 기록 층의 기록 마크와 다를 수 있다. 재생층의 기록 마크는 aperture 가 지나가면서 소거 될 수도 있으나, 연속 재생 시 aperture 가 열리기 전의 신호 가 먼저 읽히게 되어 재생 층의 마크가 기록 층의 마크와 섞여서 읽히게 된다. 또한, 그 재생층의 마 크 크기가 클 경우도 aperture 에 의해 소거되지 않 은 채 기록 층의 마크와 동시에 읽혀 재생 신호와 섞여 검출되게 된다. 그리고 재생층의 마크는 amorphous 마크이므로 반복적인 재생에 의해 crystalline phase 로 상변화하여 반사도를 변화시켜 degradation 의 원인을 제공한다.

그림 6 은 pre-curing 을 거친 초해상디스크에 75nm(2T-2T)를 연속 기록 후 dynamic tester 를 이용 하여 파워를 달리하여 post curing 을 실시하고 반 복 재생에 따른 CNR 변화율을 보여주는 그래프 이다. 그래프에서 알 수 있듯이 2.0, 2.5mW 의 낮 은 파워에서는 재생층의 마크가 충분히 소거되지 않아 CNR degradation 이 크고 3.0mW 이상에서는 stability 가 증가함을 알 수 있다. 그러나, 너무 높 은 파워로 post-curing 을 실시 할 경우 재결정화가 일어나 degradation 이 심해짐을 알 수 있다.

그림 7 은 post-curing 을 실시하기 전과 위의 그 림 6 에서 최적화 된 post -curing 조건인 3mW 에 서 post-curing 을 실시 한 후의 RF 및 EQ 이미지 를 나타낸 것이다. Post-curing 을 실시 하기 전에 비해서 post-curing 을 실시한 후의 RF 이미지가 더 깨끗해졌음을 알 수 있고, 이 때 CNR 은 1~2dB 정 도 향상되었고, jitter 도 2~3% 정도 향상되었다. 이 는 post-curing 을 행함으로써 재생층의 마크를 소 거하고 phase 를 균일하게 하여 aperture 가 깨끗하 게 열리는 조건을 형성시켰다는 것을 의미한다.

4. Conclusions

초해상 디스크에서 상변화 물질을 재생층으로 사용할 경우 재생층의 degradation 문제가 심각하 였다. 이를 해결하기 위해 기록 전 pre-curing 으로 재생층의 결정화 및 균일화를 도모하여 noise 를 1~2dB 정도 감소시켰고 short-term degradation 을 향 상시켰다. 또한, 기록 후 재생층에 남아 있는 마크 를 post-curing 으로 소거하여 RF 신호를 향상시켰 을 뿐만 아니라, CNR, 재생안정성도 확보할 수 있 었다. 유전층에서 S 의 유입으로 인한 long-term degradation 은 GeN 와 같은 protective layer 를 삽입 하면 향상될 것으로 사료된다.

Fig. 6 CNR change vs. readout cycles with variation of post-curing power

Fig. 7 RF and EQ image of 75nm mark (2T-2T);(a)before post-curing, and (b) after post-curing

- [1] J. Tominaga, T. Nakano, and N. Atoda, 1998, "An approach for recording and readout beyond the diffraction limit with an Sb thim film", Appl. Phys. Lett., pp.2078-2080.
- [2] T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, 2002, "Rigid bubble pit formation and huge signal enhancement in super resolution near-field structure disk with platinum-oxide layer", Appl. Phys. Lett., No. 81, pp.4697-4699.
- [3] Y. Guo, H. Ming, L. Tang, Y. H. Lu, etc., 2002, "The size effect in the AgO_x-type super-resolution nearfield structure", Opt. Comm., No.212, pp.7-10.

참고문헌

- [4] K. Kwak, S.-H. Kim, C. Lee, and K. Song, 2007, "New material for super resolution disc", ODS2007, TuC5.
- [5] J. Kim, J. Bae, I. Hwang, C. Chung, and I. Park, 2007, "Stability enhancement of super-RENS high temperature readout signal", ODS2007, TuC4.
- [6] C. Fery, L. Pacearescu, G. Pilard, and S. Knappmann, 2007, "Influence of donor impurity concentration in a semiconducting mask layer for super-resolution mearfield pre-recorded disk", ODS2007, TuC6.
- [7] B. Hyot, S. Gidon, O. Lemonnier, and F. Laulagnet, 2007, "Super-resolution effect on ROM disc with a semiconductor", ISPS2007, pp.11-12.