Scientific Feasibility on the Risk-Based Clean-up and Management of Contaminated Sites

"위해성" 개념을 이용한 오염지역 정화 및 관리의 과학적 타당성

  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University)
  • Published : 2007.02.28

Abstract

In the last decades, the decrease in biological or chemical availability of sorbed contaminants as contact time passed, is generally accepted. This phenomenon so called as "aging" or "sequestration" is known to directly affect risk of the contaminats. This was observed for mainly for hydrophobic organic contaminants (HOCs), but also reported for heavy metals. Aging is known to be directly related to sorption-desorption hysteresis, irreversible sorption, desorption-resistance, nonequilibrium sorption, etc. The decrease in bioavailability due to aging or sequestration indicates realistic decrease in risk potential. Recently a risk-based management concept by scientific evidences but not the simple measurement of contaminant concentration has been attempted to determine environmentally acceptable remedial endpoint. This is because selection of remedial endpoint based on not total concentration but the bioavailability and toxicity of contaminants can reduce both the treatment cost and remedial activities of the contaminated sites. The bioavailability and toxicity of the residual contaminants are highly affected by the fate and transport and also directly affect the exposure pathways and bioaccumulation of contaminants in the living biota. In this paper, scientific feasibility on the risk-based clean-up and management of contaminated sites is reviewed.

지난 수십년 동안 토양내 수착된 오염물질이 접촉시간(contact time)이 경과함에 따라 생물학적 또는 화학적 이용성의 감소는 일반적으로 인식되어 오고 있다. 이와 같은 aging 또는 격리(sequestration)라 불리는 현상이 위해성에 직접적인 영향을 미친다는 것이 알려져 있다. 이러한 현상은 소수성 오염물질을 중심으로 보고되어 왔으나, 최근 연구결과에 의하면 중금속의 경우에도 이와 같은 현상이 발견되고 있으며, 이는 오염물질의 흡-탈착 이력(hysteresis) 현상, 비가역 흡착, 탈착저항성, 비평형 흡착 등과 직접적으로 연관된 것으로 알려지고 있다. Aging 또는 sequestration에 의한 오염물질의 생이용성(bioavailability)의 감소는 인체에 대한 실질적인 위해성의 감소를 의미한다. 최근 들어 이와 같은 과학적인 증거를 토대로 단순한 오염물질의 농도 측정이 아니라 위해성에 근거한 오염 복원(또는 관리)의 개념이 도입되어 환경친화적인 복원수준의 선정에 적용하고 있다. 이는 토양내 오염물질의 총농도가 아니라 오염물질의 생이용성 또는 독성을 기준으로 하여 정화수준을 결정함으로써 오염부지의 처리비용과 노력의 절감효과를 동시에 기대할 수 있기 때문이다. 토양내 잔류오염물질의 생이용성 또는 독성은 오염물질의 이동 또는 거동 특성에 의해 영향을 받으며 결국 생물체로의 노출 경로와 생체축적에 직접적인 영향을 미친다. 본 논문에서는 토양내 오염물질의 위해성을 평가하여 토양오염복원에 적용시 과학적인 타당성에 대해 살펴보고자 하였다.

Keywords

References

  1. 김영규, 토양내 소수성 유기화합물의 흡착. 탈착거동 및 생물학 적 이용성, 경북대학교 석사학위 논문, 2002
  2. 남경필, 김재영, 2002, 생물학적 이용성과 aging이 오염토양의 정 화수준 결정에 미치는 영향, 대한환경공학회지, 24, 1975-2000
  3. 박준형, 인산염계 화합물과 개질점토를 이용한 중금속 오염토양 의 고정화, 금오공과대학교, 석사학위논문, 2005
  4. 환경부, 토양오염 해성 평가방안 마련을 위한 연구용역: 위해성 에 근거한 토양복원전략 모색, 한국지하수토양환경학회, 2003. pp. 324
  5. Ainsworth, C.C., Pilon, J.L., and Gassman, P.L., 1994, Cobalt, cadmium, and lead sorption to hydrous iron-oxide-residence time effect, Soil Sci. Soc. Am J., 58, 1615-1623 https://doi.org/10.2136/sssaj1994.03615995005800060005x
  6. Alexander, M., 2000, Ageing, bioavailability, overestimation of risk from environmental pollutants, Environ. Sci. Technol., 34, 4259-4265 https://doi.org/10.1021/es001069+
  7. Berti, W.R. and Cunningham, S.D., 1997, In-place inactivation of Pb in Pb-contaminated soils, Environ. Sci. Technol., 31, 1359- 1364 https://doi.org/10.1021/es960577+
  8. Bonaccorsi, A., di Domenico, A., Fanelli, R., Merli, F., Vanzate, R., and Zapponi, G.A., 1984. The influence of soil particle adsorption on 2,3,7,8-tetrachlorodibenzo-p-dioxin biological uptake in the rabbit. Arch. Toxicol. Suppl. 7, 431-434
  9. Bouchard, D.C., 2003, Cosolvent effects of phenanthrene sorption- desorption on a freshwater sediment, Environ. Toxicol. Chem., 22, 736-740 https://doi.org/10.1897/1551-5028(2003)022<0736:CEOPSD>2.0.CO;2
  10. Chen, M., Ma, K.Q., Singh, A.P., Cao, R.X., and Melamed, R., 2003, Field demonstration of in situ immobilization of soil Pb using P amendments, Adv. Env. Res., 8, 93-102 https://doi.org/10.1016/S1093-0191(02)00145-4
  11. Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol., 32, 338-343 https://doi.org/10.1021/es970608g
  12. Conder, J.M. and Lanno, R.P., 2000, Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida, Chemosphere, 41, 1659-1668 https://doi.org/10.1016/S0045-6535(00)00045-X
  13. Comans, R.N.J., 1987, Adsorption, desorption and isotopic exchange of cadmium on illite-evidence for complete reversibility, Wat. Res., 21, 1573-1576 https://doi.org/10.1016/0043-1354(87)90143-6
  14. Cornellison, G., Rigterink, H., Ferdinandy M.M.A., and van Noort, P.C.M., 1998, Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation, Environ. Sci. Technol., 32, 966-970 https://doi.org/10.1021/es9704038
  15. Dasappa, S.M. and Loehr, R.C., 1991, Toxicity reduction in contaminated soil bioremediation processes, Wat. Res., 25, 1121-1130 https://doi.org/10.1016/0043-1354(91)90205-5
  16. Davis, B.N.K., 1971, Laboratory studies on the uptake of aldrin and dieldrin by earthworms, Soil Biol. Biochem., 3, 221-233 https://doi.org/10.1016/0038-0717(71)90018-6
  17. Decker, G.C., Bruce, W.N., and Bigger, J.H., 1965, The accumulation and dissipation of residues resulting from the use of aldrin in soils, J. Econ. Entomol., 58, 266-271 https://doi.org/10.1093/jee/58.2.266
  18. Dzombak, D.A. and Morel, F.M.M., 1990, Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley, New York
  19. Edwards, C.A., Beck, S.D., and Lichtenstein, E.P., 1957, Bioassay of aldrin and lindane in soil, J. Econ. Entomol., 50, 622-626 https://doi.org/10.1093/jee/50.5.622
  20. Eick, M.J., Naprstek, B.R., and Brady, P.V., 2001, Kinetics of Ni(II) sorption and desorption on kaolinite: Residence time effects, Soil Sci., 166, 11-17 https://doi.org/10.1097/00010694-200101000-00004
  21. Eick, M.J., Peak, J.D., Brady, P.V., and Pesek, J.D., 1999, Kinetics of lead adsorption/desorption on goethite: Residence time effect, Soil Sci., 164, 28-39 https://doi.org/10.1097/00010694-199901000-00005
  22. Ford, R.G., Scheinost, A.C., Scheckel, K.G., and Sparks, D.L., 1999, The link between clay mineral weathering and the stabilization of Ni surface precipitates, Environ. Sci. Technol., 33, 3140-3144 https://doi.org/10.1021/es990271d
  23. Ford, R.G., Scheinost, A.C., and Sparks, D.L., 2001, Frontiers in metal sorptin/precipitation mechanism on soil mineral surfaces, Adv. Agron., 74, 41-62 https://doi.org/10.1016/S0065-2113(01)74030-8
  24. Griest, W.H., Stewart, A.J., Tyndall, R.L., Caton, J.E., Ho, C.H., Ironside, K.S., Caldwell, W.M., and Tan, E., 1993, Chemical and toxicological testing of composted and explosives-contaminated soil, Environ. Toxicol. Chem., 12, 1105-1116 https://doi.org/10.1897/1552-8618(1993)12[1105:CATTOC]2.0.CO;2
  25. Harper, M.P., Davidson, W., Zhang, H., and Tych, W., 1998, Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes, Geochim. Cosmochim. Acta, 62, 2757-2770 https://doi.org/10.1016/S0016-7037(98)00186-0
  26. Hatzinger, P.B., and Alexander, M., 1995. Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545 https://doi.org/10.1021/es00002a033
  27. Hettiarachchi, G.M., Pierzynski, G.M., and Ransom, M.D., 2000, In situ stabilization of soil lead using phosphorus and manganese oxide, Environ. Sci. Technol., 34, 4614-4619 https://doi.org/10.1021/es001228p
  28. Huang, W.L., Yu. H., and Weber. W.J., 1998, Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments-1. A comparative analysis of experimental protocols, J. Contam. Hydrol., 31, 129-148 https://doi.org/10.1016/S0169-7722(97)00056-9
  29. Hulzebos, E.M., Adema, D.M.M., Dirven van Breemen, E.M.L., Henzen, L., van Dis, W.A., Herbold. H.A., Hoekstra, J.A., Baerselman, R., and van Gestel. C.A.M., 1993. Phytotoxicity studies with lettuce (Lactuca sativa) in soil and nutrient solution, Environ. Toxicol. Chem., 12, 1079-1094 https://doi.org/10.1897/1552-8618(1993)12[1079:PSWLSI]2.0.CO;2
  30. Kalucheva, I. and Paskaleva, K., 1967, Electron-microscope study of micropores in certain soil type (In Bulgarian), Pochvoznanie i Arokhimiya, 2, 3-16
  31. Kan, A.T., Fu., G., and Hunter, M.A., 1997, Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments, Environ. Sci. Technol., 31, 2176-2185 https://doi.org/10.1021/es9601954
  32. Kan, A.T., Fu, G., Hunter, M.A., Chen, W., Ward, C.H., and Tomson, M.B., 1998, Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, Environ. Sci. Technol., 32, 892-902 https://doi.org/10.1021/es9705809
  33. Kottler, B.D. and Alexander, M., 2001, Relationship of properties of polycyclic aromatic hydrocarbons to sequestration in soil, Env. Poll., 113, 293-298 https://doi.org/10.1016/S0269-7491(00)00189-5
  34. Krauss, M. and Wilcke, W., 2001, Biomimetic Extraction of PAHs and PCBs from Soil with octadecyl-modified silica disks to predict their availability to earthworms, Environ. Sci. Technol., 35, 3931-3935 https://doi.org/10.1021/es010081e
  35. Krauss, M., Wilcke, W., and Zech, W., 2000, Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban Soils, Environ Sci. Technol., 34, 4335-4340 https://doi.org/10.1021/es001137s
  36. La Force, M.J., Hansel, C.M., and Fendorf, S., 2000, Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced palustrine emergent wetland, Environ. Sci. Technol., 34, 3937-3943 https://doi.org/10.1021/es0010150
  37. Lei, L., Bagchi, R., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H., 2006, Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions, J. Env. Eng., 132, 384-391 https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(384)
  38. Lei, L., Suidan, M.T., Khodadoust, A.P., and Tabak, H.H., 2004, Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption, Environ. Sci. Technol., 38, 1786-1793 https://doi.org/10.1021/es030643p
  39. Li, A. and Liu, X., 2005, Combined effects of aging and cosolvents on sequestration of phenanthrene in soils, J. Env. Eng., 131, 1068-1072 https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(1068)
  40. Linkov, I., Satterstrom, F.K., Kiker, G., Batchelor, C., Bridges, T., and Ferguson, E., 2006, From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications, Environ. Int., 32, 1072- 1093 https://doi.org/10.1016/j.envint.2006.06.013
  41. Linz, D.G. and Nakles, D.V. (editor) 1997. Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineers, pp. 630
  42. Liste H. and Alexander, M., 2002, Butanol extraction to predict bioavailability of PAHs in soil, Chemosphere, 46, 1011-1017 https://doi.org/10.1016/S0045-6535(01)00165-5
  43. Lock, K. and Janssen, C.R., 2003, Influence of ageing on znc bioavailability in soils, Env. Poll., 126, 371-374 https://doi.org/10.1016/S0269-7491(03)00232-X
  44. Luan, T.G., Yu, K.S.H., Zhong, Y., Zhou, H.W., Lan, C.Y., and Tam, N.F.Y., 2006, Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments, Chemosphere, 65, 2289-2296 https://doi.org/10.1016/j.chemosphere.2006.05.013
  45. Ma, Y.B. and Uren, N.C., 1998, Transformations of heavy metals added to added to soil-application of a new sequential extraction procedure, Geoderma, 84, 157-168 https://doi.org/10.1016/S0016-7061(97)00126-2
  46. Ma, Y., Lombi, E., Oliver, I.W., Nolan, A.L., and McLaughlin, M.J., 2006, Long-term aging of copper added to soils, Environ. Sci. Technol., 40, 6310-6317 https://doi.org/10.1021/es060306r
  47. Macleod, C.J.A. and Semple, K.T., 2000, Influence of contact time on extractability and degradation of pyrene in soils, Environ. Sci. Technol., 34, 4952-4957 https://doi.org/10.1021/es000061x
  48. Manilal, V.B. and Alexander, M., 1991. Factor affecting the microbial degradation of phenanthrene in soil, Appl. Microbiol. Biotechnol., 35, 401-405
  49. Martinez, C.E. and Mcbride, M.B., 2000, Aging of coprecipitated Cu in alumina changes in structural location, chemical form, and solubility, Geochim Cosmochim Acta, 64, 1729-1736 https://doi.org/10.1016/S0016-7037(00)00344-6
  50. Mattson, A.M., Kahrs, R.A., and Murphy, R.T., 1970, Quantitative determination of triazine herbicides in soils by chemical analysis, Residue Rev., 32, 371-390
  51. McCall, P.J. and Agin, P.L., 1985, Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxicol. Chem., 4, 37-44 https://doi.org/10.1897/1552-8618(1985)4[37:DKOPAA]2.0.CO;2
  52. McCloskey, W.B. and Bayer. D.E., 1987, Thermodynamics of fluridone adsorption and desorption in three California soils, Soil Sci. Soc. Am. J., 51, 605-612 https://doi.org/10.2136/sssaj1987.03615995005100030010x
  53. McGowen, S.L., Basta, N.T., and Brown, G.O., 2000, Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil, J. Environ. Qual., 30, 493-500 https://doi.org/10.2134/jeq2001.302493x
  54. McGroddy, S.E., Farrington, J.W., and Gschwend. P.M., 1996, Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, Environ. Sci. Technol., 30, 172-177 https://doi.org/10.1021/es950218z
  55. McLaren, R.G., Backes, C.A., Rate, A.W., and Swift, R.S., 1998, Cadmium and cobalt desorption knetics from soil clays: Effect of sorption period, Soil Sci. Soc. Am. J., 62, 332-337 https://doi.org/10.2136/sssaj1998.03615995006200020006x
  56. Mingelgrin, U. and Gerstl, Z., 1993, A unified approach to the interaction of small molecules with macrospecies. In: A.J. Beck, K.C. Jones, M.H.B. Hayes, and U. Mingelgrin, eds., Organic Substances in Soil and Water: Natural Constituents and their Influence on Contaminant Behaviour, p. 102-127. Royal Society of Chemistry, Cambridge, U.K
  57. Mossop, K.F. and Davidson, C.M., 2003, Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments, Anal. Chim. Acta, 478, 111-118 https://doi.org/10.1016/S0003-2670(02)01485-X
  58. Nachtegaal, M. and Sparks, D.L., 2003, Nickel sequestration in a kaolinite-humic acid complex, Environ. Sci. Technol., 37, 529-534 https://doi.org/10.1021/es025803w
  59. Northcott, G.L. and Jones. K.C., 2001, Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration, Environ. Sci. Technol., 35, 1103-1110 https://doi.org/10.1021/es000071y
  60. O'Reilly, S.E., Strawn, D.G., and Sparks, D.L., 2001, Residence time effect on arsenate adsorption/desorption mechanisms on goethite, Soil Sci. Soc. Am. J., 65, 67-77 https://doi.org/10.2136/sssaj2001.65167x
  61. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soils: Experimental design, Environ. Sci. Technol., 33, 1193-1199 https://doi.org/10.1021/es9806074
  62. Opdyke, D.R. and Loehr, R.C., 1999, Statistical analysis of chemical release rates from soils, J. Soil Contam., 8, 541-558 https://doi.org/10.1080/10588339991339469
  63. Oste, L.A., Dolfing, J., Ma, W.C., and Lexmond, T.M., 2001, Cadmium uptake by earthworms as related to the availability in the soil and the intestine, Environ. Toxicol. Chem., 20, 785-1791
  64. Parrish, Z.D., Banks, M.K., and Schwab, A.P., 2005, Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil, Env. Poll., 137, 187- 197 https://doi.org/10.1016/j.envpol.2005.02.012
  65. Peijnenburg, W.J.G.M., Baerselman, R., de Groot, A.C., Jager, T., Posthuma, L., and Van Veen, R.P.M., 1999, Relating environmental availability to bioavailability soil-type-dependent metal accumulation in the oligochaete Eisenia andrei, Ecotoxicol. Environ. Safe., 44, 294-310 https://doi.org/10.1006/eesa.1999.1838
  66. Reid, B.J., Stokes, J.D., Jones, K.C., and Semple, K.T., 2000, HPCD extraction for the evaluation of PAH bioavailability, Environ. Sci. Technol., 34, 3174-3179 https://doi.org/10.1021/es990946c
  67. Scheckel, K.G. and Sparks, D.l., 2001, Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces, Sol. Sci. Soc. Am. J., 65, 685-694 https://doi.org/10.2136/sssaj2001.653685x
  68. Scheidegger, A.M. and Sparks, D.L., 1996, Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite, Chem. Geol., 132, 157-164 https://doi.org/10.1016/S0009-2541(96)00051-4
  69. Seaman, J.C., Arey, J.S., and Bertsch, P.M., 2001, Immobilization of nikel and other metals in contaminated sediments by hydroxyapatite addition, J. Environ. Qual., 30, 460-469 https://doi.org/10.2134/jeq2001.302460x
  70. Sparks, D.L., 2003, Environmental Soil Chemistry, Academic Press, 2nd ed., pp. 350
  71. Steinberg, S.M., Pignatello, J.J., and Sawhney. B.L., 1987, Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 1201-1208 https://doi.org/10.1021/es00165a007
  72. Strawn, D.G. and Sparks, D.L., 2000, Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Sci. Soc. Am. J., 64, 144-156 https://doi.org/10.2136/sssaj2000.641144x
  73. Strawn, D.G., Scheidegger, A.M., and Sparks, D.L., 1998, Kinetics and mechanism of Pb(II) sorption and desorption at the aluminium oxide-water interface, Environ. Sci. Technol., 32, 2596-2601 https://doi.org/10.1021/es980152i
  74. Stuer-Lauridsen, F., 2005, Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment, Env. Poll., 136, 503-524 https://doi.org/10.1016/j.envpol.2004.12.004
  75. Sun, H.W. and Li, J.G., 2005, Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE, Water Air Soil Poll., 166, 353-365 https://doi.org/10.1007/s11270-005-7275-y
  76. Symons, B.D. and Sims, R.C., 1998, Assessing detoxification of a complex hazardous waste using the microtox bioassay, Arch. Environ. Contam. Toxicol., 17, 497-505 https://doi.org/10.1007/BF01055515
  77. Technical Report R1. 1992, Feasibility study for the remediatino of surface contamination at an MGP site. Draft from consulting firm, September 29
  78. Technical Report R16a. 1994. operations report : (wood treating site). Consulting firm, April
  79. Technical Report R16b. 1992. Treatability evaluation to determine the feasibility of in-situ flushing at a wood preserving site. Laboratory Progress Report, Consulting firm, October
  80. Technical Report R25. 1993. Results of bench-scale biotreatability testing of petroleum hydrocarbons in soils at the petroleum products plant. Consulting firm, November
  81. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 884-851 https://doi.org/10.1021/ac50043a025
  82. van der Wal, L., Jager, T., Fleuren, R.H.L.J., Barendregt, A., Sinnige, T.L., Van Gestel, C.A.M., and Hermens, J.L.M., 2004, Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil, Environ. Sci. Technol., 38, 4842-4848 https://doi.org/10.1021/es035318g
  83. Verbruggen, E.M.J., Vaes, W.H., Parkerton, T.F., and Hermens, J.L.M., 2000, Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity, Environ. Sci. Technol., 34, 324-331 https://doi.org/10.1021/es990616s
  84. Vinturella, A.E., Burgess, R.M., Coull, B.A., Thompson, K.M., and Shine, J.P., 2004, Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes, Environ. Sci. Technol., 38, 1154-1160 https://doi.org/10.1021/es034706f
  85. Vig., K., Megharaj, M., Sethunathan, N., and Naidu, R., 2003, Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review, Adv. Environ. Res., 8, 121-135 https://doi.org/10.1016/S1093-0191(02)00135-1
  86. Wang, X., Yu, X., and Bartha, R., 1990, Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil, Environ. Sci. Technol., 24, 1086-1089 https://doi.org/10.1021/es00077a020
  87. Weber, J.B. and Weed, S.B., 1974, Effects of soil on the biological activity of pesticides, In: W.D. Guenzi, ed., Pesticides in Soil and Water, pp. 223-253. Soil Sci. Soc. Am., Madison, WI, USA
  88. Weber, W.J. and Huang. W.L., 1996, A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 30, 881-888 https://doi.org/10.1021/es950329y
  89. Weissenfels, W.D., Klewer, H.J., and Langhoff, J., 1992, Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity, Appl. Microbiol. Biotechnol., 36, 689-696
  90. Wild, S.R. and Jones, K.C., 1993, Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge, Environ. Toxicol. Chem., 12, 5- 12 https://doi.org/10.1897/1552-8618(1993)12[5:BAALOP]2.0.CO;2
  91. Williamson, D.G., Loehr, R.C., and Kimura, Y., 1998, Release of chemicals from contaminated soils, J. Soil Contam., 7, 543-558 https://doi.org/10.1080/10588339891334492
  92. Wood, W.W., Kraemer, T.F., and Hearn, P.P.Jr., 1990, Intragranular diffusion: an important mechanism influencing solute transport in clastic aquifers, Science, 247, 1569-1572 https://doi.org/10.1126/science.247.4950.1569
  93. Xing, B.S. and Pignatello. J.J., 1996, Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism, Environ. Toxicol. Chem., 15, 1282-1288 https://doi.org/10.1897/1551-5028(1996)015<1282:TDISOO>2.3.CO;2
  94. You, J., Landrum, P.F., and Lydy, M.J., 2006, Comparison of chemical approaches for assessing bioavailability of sedimentassociated contaminants, Environ. Sci. Technol., 40, 6348-6353 https://doi.org/10.1021/es060830y
  95. Zhang, H., Davison, W., Miller, S., and Tych, W., 1995, In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta, 59, 4181-4192 https://doi.org/10.1016/0016-7037(95)00293-9