Interaction Between Groundwater and Stream Water Induced by the Artificial Weir on the Streambed

하상 인공구조물에 의해 유도되는 지하수-하천수 시스템의 상호작용

  • Published : 2007.04.30

Abstract

This study investigated the interaction between groundwater and stream water systems, which is caused by the artificial weir on streambed, enforcing external stresses on the groundwater system. The study area is in Nami Natural Recreation Woods located in Chungcheongnam-do Geumsan-gun Nami-myeon Geoncheon-ri. In this study both of hydrophysical methods (hydraulic head) and hyrdochemical investigations (pH, EC, major ion analysis) were applied. In order to identify the relationship between each of study results, cross-correlation analysis is performed. From results of hydrophysical methods, water level fluctuation at BH-14, installed by the weir, shows the double-recession pattern much more frequently and much higher amplitudes than the fluctuation at each of other monitoring wells. Using the results by hydrochemical investigations, hydrochemical properties at BH-14 is similar to the hydrochemical characteristics in stream water. To analyze the interrelationships between the results from each of applied methods, cross-correlation analysis was applied. Results from the correlation analyses, water levels at BH-14 and stream weir showed the highest cross-correlation in hydrophysical aspects. On the other hand, the correlation between stream weir and bridge was the highest in hydrochemical aspects. The difference between the results from each of methods is due that the hydrophysical response at BH-14, such as water level, is induced by the pressure propagation-not with mass transfer, but the hydrochemical interaction, caused by mass transport, takes much more times. In conclusion impermeable artificial weir on streambed changes the interfacial condition between the stream and surrounding aquifers. The induced water flux into the groundwater system during flood period make water level at BH-14 increase instantly and groundwater quality higly similar to the quality of stream water. Referred similarities in both of water level and water quality at BH-14 become much higher when water level at weir grow higher.

본 연구는 하상인공구조물에 의해 유도되는 지하수-하천수 시스템의 상호작용을 지하수 순환을 중심으로 연구하였다. 연구지역은 충청남도 금산군 남이면 건천리의 남이휴양림으로 연구의 목적을 달성하기 위해 수리물리적 방법(수위관측)과 수리화학적 특성(pH, EC, 주 이온분석)을 분석하였으며, 이들 자료간의 연관성을 파악하기 위해서 상호상관분석을 실시하였다. 수리물리적 방법에 의한 연구결과 하상 보 수평부의 BH-14의 수위변동은 다른 지하수관정과 비교 할 때 이중퇴행양상이 빈번하게 나타났으며, 그 폭도 크게 나타났다. 또한, 수리화학적 방법에 의해 얻은 결과를 자연추적자의 개념으로 사용해 보면 지하수인 BH-14가 하천에 유사한 성향을 나타내었다. 상관성분석결과에서 수리물리적 측면인 수위에 대한 상관성분석에서 BH-14와 하상 보에서 가장 높게 나타났으며, 반면 수리화학적 측면에 대한 상관성분석에서는 하상 보와 다리의 상관성이 가장 높게 나타났다. 이는 수위와 같은 물리적 상호작용은 용질거동 없이 압력의 전파에 의해 일어나는데 반하여 수리화학적 상호작용은 용질의 거동에 의해 반응이 일어나기 때문에 더 많은 시간이 걸리기 때문인 것으로 판단된다. 결과적으로 하상의 불투수성의 보에 의해 하천과 주변대수층의 경계조건이 바뀌고, 이때 지하수 시스템으로 유입되는 하천수에 의해 BH-14의 수위가 즉각적으로 상승하며, 수질에서 하천수적 성향을 나타내는 것으로 판단된다. 이러한 현상은 보의 수위가 높아질수록 더욱 증가하는 경향을 나타낸다.

Keywords

References

  1. 김용제 등, 2005, 지하수-하천수 연계순화/유동 시스템 개발, 한 국지질자원연구원, 수자원의 지속적 확보기술개발, 1차년도 보고서
  2. 이진용, 이강근, 2002, 강우에 대한 지하수위 반응양상 비교분석: 강원도 원주지역과 경기도 의왕지역, 한국지하수토양환경학회지, 7(3-14)
  3. Anderson, E.I., 2005, Modeling groundwater-surface water interactions using the Dupuit approximation, Advaces in Water Resources, 28, 315-327 https://doi.org/10.1016/j.advwatres.2004.11.007
  4. Box, G.P., Jenkins, G.M., and Reinsel, G.C., 1994, Time series analysis, Prentice-Hall Inc, 407-413
  5. Crandall, C,A. and Kantz, B,G., 1999, Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA, Hydrogeology Journal, 7, 454-467 https://doi.org/10.1007/s100400050218
  6. Devito, K.J., Hill, A.R., and Roulet, N., 1996, Groundwater-surface water interactions in headwater forested wetlands of the Canadian Shield, Journal of Hydrology, 181, 127-147 https://doi.org/10.1016/0022-1694(95)02912-5
  7. Fetter, C.W., 2001, Applied hydrogeology, Prentice-Hall Inc, 46- 48, 55-58
  8. Linderfelt, W.R. and Turner, J.V., 2001, interaction between shallow ground-water, saline surface water and nutrient discharge in a seasonal estuary: the Swan-Canning system, Hydrological Process, 15, 2631-2653 https://doi.org/10.1002/hyp.302
  9. Negrel, P., Petelet-Giraud, E., Barbier, J., and Gautier, E., 2003, Surface water-groundwater interactions in an alluvial plain: Chemical and isotopic systematics, Journal of Hydrology, 277, 248-267 https://doi.org/10.1016/S0022-1694(03)00125-2
  10. Oxtobee, J.P.A. and Novakowski, K.S., 2003, Ground water-surface water interaction in a fractureed rock aquifer, Groundwater, 41, 667-681 https://doi.org/10.1111/j.1745-6584.2003.tb02405.x
  11. Rodgers, P., Soulsby, C., Petry, J., Malcolm, I., Gibbins, C., and Dunnn, S., 2004, Groundwater-surface water interac- tions in a braided river: a tracer-based assessment, Hydrological processes, 18, 1315-1332 https://doi.org/10.1002/hyp.1404
  12. Woman, A., Packman, A.I., Johansson, H., and Jonsson, K., 2002, Effect of flow-induced exchange in hyporheic zone on longitudinal transport of solutes in streams and rivers, Water resources reserch, 38(1), 1001
  13. Wurster, F.C., Cooper, D.J., and Sanford, W.E., 2002, Stream/ aquifer interactions at Great Sand Dunes National Monument, Colorado: influences on interdunal wetland disappearance, Journal of Hydrology