재이용한 산업부산물에 의한 비소(V) 이온 흡착능 평가

Evaluation of Industrial Byproduct for the Adsorption of Arsenic (V)

  • Park, Youn-Jong (Department of Environmental Engineering, Kwangwoon Universiy) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon Universiy) ;
  • Choi, Sang-Il (Department of Environmental Engineering, Kwangwoon Universiy)
  • 발행 : 2007.08.31

초록

본 연구에서는 화학회사에서 발생되는 연마분진 폐기물의 흡착제로서의 재이용성을 평가하였다. 연마분진을 $550^{\circ}C$에서 하소시킴으로서 유기불순물을 제거하였다. 연마분진내의 주요 무기물은 Al이었으며 하소 후 Al 함량은 29.09%에서 52.73%로 증가되었다. 하소 후 시료의 안정성 평가를 실시한 결과 pH 2.0의 강한 산성조건에서도 모든 중금속들의 용출량은 0.3 mg/L 이하로 나타났다. pH 변화에 따른 As(V) 흡착실험에서 As(V)의 흡착효율은 전형적인 음이 온형 흡착경향을 보였다. 하소된 연마분진의 주입량 변화에 따른 As(V)의 등온흡착 실험결과는 Freundlich 등온흡착식이 Langmuir 등온흡착식보다 상대적으로 잘 표현되는 것으로 나타났다. Freundlich 등온흡착상수 K와 1/n은 각각 4.2442와 0.3161로 얻어졌다. Langmuir 등온흡착식으로 얻어진 하소된 연마분진의 최대 As(V) 흡착량은 13.25 mg/g이었다. 이러한 연구결과, 하소된 연마분진은 안정도 및 As(V) 흡착능을 고려하였을 때 재이용성이 양호한 흡착제로 나타났다.

This study provides an attempt to evaluate sanding wastes, generated from a chemical company as a reused adsorbent. Organic impurities in the raw sanding wastes were removed by calcination at $550^{\circ}C$. Aluminum was a major inorganic composition in the raw sanding wastes and increased from 29.09% to 52.73% after calcination. Dissolved concentrations of heavy metals from the calcined sample were below 0.3 mg/L in a stability test at pH 2. From the pH-edge adsorption experiments with the calcined sanding wastes, As (V) was found to follow an anionic-type adsorption. Adsorption isotherm obtained with variation of the dosage of the calcined sanding wastes was better described by Freundlich equation than Langmuir one. Freundlich constants of K and 1/n were 4.244 and 0.316, respectively. The As (V) adsorption capacity of calcined sanding wastes estimated from Langmuir isotherm was 13.25 mg/g. From this study, the calcined sample was identified as a good reusable adsorbent in the view point of stability and adsorption capacity on As (V).

키워드

참고문헌

  1. 김광섭, 김병권, 홍순철, 장윤영, 양재규, 2006, 금속산화물 함유흡착제들의 독성 비소 제거능 비교, 2006년 대한환경공학회 추계학술연구발표회, 강릉대학교, p. 631-637
  2. 김성연, 김연식, 1995, 깁사이트를 원료로 한 고온촉매용 담체의 제조, 대한금속학회, 32(9), 49-58
  3. Anderson, M.A., Ferguson, J.F., and Davis, J., 1976, Arsenate adsorption on amorphous aluminum hydroxide, J. Col. Int. Sci., 54(3), 391 https://doi.org/10.1016/0021-9797(76)90318-0
  4. Arai, Y., Elzinga, E.J., Sparks, D.L., 2001, X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface, J. Col. Int. Sci., 235, 80-88 https://doi.org/10.1006/jcis.2000.7249
  5. Carrol-Webb, S.A., Walter, J.V., 1988, A surface complex reaction model for the pH dependence of corundum and kaolinite dissolution rate, Geo. Cos. Acta, 52(11), 2609-2623 https://doi.org/10.1016/0016-7037(88)90030-0
  6. Clifford, D.A. and Lin C.C., 1991, Arsenic (III) and arsenic (V) removal from drinking water in San Ysaidro, New Mexico, EPA/600/S2-90/011, Cincinnati, 1-7
  7. Jain, A., Raven, K.P., and Loeppert, R.H., 1999, Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry, Environ. Sci. Technol., 33, 1179-1184 https://doi.org/10.1021/es980722e
  8. Lee, W.H., Park, J.S., Sok, J.H., and Reucroft, P.J., 2005, Effects of pore structure and surface state on the adsorption properties of nano-porous carbon materials in low and high relative pressures, Appl. Sur. Sci., 246, 77-81 https://doi.org/10.1016/j.apsusc.2004.10.038
  9. Lin, T.F. and Wu, J.K., 2001, Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics, Wat. Res. 35, 2049-2057 https://doi.org/10.1016/S0043-1354(00)00467-X
  10. Manning, B.A. and Goldberg, S., 1997, Adsorption and stability of arsenic (III) at the clay mineral-water interface, Environ. Sci. Technol., 31, 2005-2011 https://doi.org/10.1021/es9608104
  11. McBride, M.B., 1982, $Cu^{2+}$-Adsorption characteristics of aluminum hydroxide and oxyhydroxides, Clays Clay Miner., 30(1), 21-28 https://doi.org/10.1346/CCMN.1982.0300103
  12. Mondal, P., Majumder, C.B., and Mohanty, B., 2006, Laboratory based approaches for arsenic remediation from contaminated water: Recent developments, J. Haz. Mat., B137, 464-479
  13. Parks, G.A., 1965, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev., 65, 177-198 https://doi.org/10.1021/cr60234a002
  14. Pierce, M.L. and Moore, C.B., 1982, Adsorption of arsenite and arsenate on amorphous iron hydroxide., Wat. Res., 16, 1247-1253 https://doi.org/10.1016/0043-1354(82)90143-9
  15. Schindler, P.W., Liechti, P., and Westal, J.C., 1987, Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/ water interface, Neth. J. Ag.ri. Sci., 35, 219-230
  16. Stumm, W. and Morgan, J.J., 1996, Aquatic Chemistry, 3rd ed. Wiley New York, USA, p. 533-540