Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations

국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교

  • Kim, Gyoo-Bum (National Groundwater Information Management and Service Center, KWATER (Michigan Water Science Center, U.S. Geological Survey)) ;
  • Yum, Byoung-Woo (Groundwater and Geothermal Resources Division, KIGAM (Headquarters, U.S. Geological Survey))
  • 김규범 (한국수자원공사 국가지하수정보센터(미국지질조사소)) ;
  • 염병우 (한국지질자원연구원 지하수지열연구부(미국지질조사소))
  • Published : 2007.10.31

Abstract

The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

현재 운영중인 국가지하수관측소의 지하수위 변동 특성을 파악하고자, 2003년부터 2005년까지의 156주 동안의 202개 암반관측정과 112개 충적관측정을 대상으로 주성분분석을 실시하였다. 암반 및 충적관측정의 지하수위에 대하여 80% 정도 설명 가능한 8개 주성분을 각각 추출하였으며 이중 충적관측정에 대해서는 주성분 인자적재값을 이용하여 군집분석을 실시한 결과 강우에 대한 지하수위의 반응(군집 1: 4.6일, 군집 2: 24.1일, 군집 3: 1.4일), 수위 변동추세(군집 1: $2.05{\times}10^{-4}$ m/day, 군집 2: $-7.85{\times}10^{-4}$ m/day, 군집 3: $-3.51{\times}10^{-5}$ m/day), 수위 변동 폭(군집 1 < 군집 2 < 군집3) 등에 의하여 설명되는 3개의 군집으로 분류되었으며, 각 군집은 유의수준 0.05에서 인근 하천과의 거리(군집 3 < 군집 2 < 군집 1), 지하수 함양율(군집 3 < 군집 2 < 군집 1) 및 지형 경사 특성(군집 3이 평야지대, 군집 1은 급경사 지역) 등에 차이를 보이는 것으로 나타났다.

Keywords

References

  1. 건설교통부.한국수자원공사, 2004a, 지하수 관측연보 2004, 한국수자원공사, 대전, p. 869
  2. 건설교통부.한국수자원공사, 2004b, 국가지하수관측망 관리시스템 보고서, 한국수자원공사, 대전, p. 411
  3. 건설교통부.한국수자원공사, 2005, 지하수 관측연보 2005, 한국수자원공사, 대전, p. 955
  4. 건설교통부.한국수자원공사, 2006, 지하수 관측연보 2006, 한국수자원공사, 대전, p. 1024
  5. 김규범, 이명재, 김정우, 이진용, 이강근, 2004, 수위강하곡선을 이용한 함양량 추정기법의 국가 지하수 관측소 지하수위 자료에의 적용성 평가, 지질공학, 14(3), 313-323
  6. 박성현, 조신섭, 김성수, 1999, 통계자료분석을 위한 한글 SPSS, SPSS 아카데미, 서울, p. 471
  7. 이명재, 김규범, 손영철, 이진용, 이강근, 2004, 국가 지하수관측소 수위자료에 대한 시계열 분석 연구, 지질학회지, 40(3), 305-329
  8. Armstrong, D. and Narayan, K., 1998, Using groundwater responses to infer recharge, CSIRO Publ., Collingwood, Australia, p. 20
  9. Evans, C.D., Davies, T.D., Wigington Jr. P.J., Tranter, M., and Kretser, W.A., 1996, Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York, J. Hydrology, 185, 297-316 https://doi.org/10.1016/0022-1694(95)02997-4
  10. Healy, R.W. and Cook, P.G., 2002, Using groundwater levels to estimate recharge, Hydrogeology J., 10, 91-109 https://doi.org/10.1007/s10040-001-0178-0
  11. Moon, S.K., Woo, N.C. and Lee, K.S., 2004, Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge, J. Hydrology, 292, 198-209 https://doi.org/10.1016/j.jhydrol.2003.12.030
  12. Ravichandran, S., Ramanibai, R., and Pundarikanthan, N.V., 1996, Ecoregions for describing water quality patterns in Tamiraparani basin, South India, J. Hydrology, 178, 257-276 https://doi.org/10.1016/0022-1694(95)02801-3
  13. Risser, D.W., Gburek, W.J. and Folmer, G.J., 2005, Comparison of methods for estimating ground water recharge and base flow at a small watershed underlain by fractured bedrock in the eastern United States, U.S. Geological Survey Scientific Investigations Report 2005-5038, p. 37
  14. Rosenberry, D.O. and Winter, T.C., 1997, Dynamics of water table fluctuations in an upland between two prairie-pothole wetlands in north Dakota, J. Hydrology, 191, 266-289 https://doi.org/10.1016/S0022-1694(96)03050-8
  15. Suk, H. and Lee, K.K., 1999, Characteristics of a ground water hydrochemical system through multivariate analysis: Clustering into ground water zones, Ground Water, 37, 358-366 https://doi.org/10.1111/j.1745-6584.1999.tb01112.x
  16. Winter, T.C., Mallory, S.E., Allen, T.R., and Rosenberry, D.O., 2000, The use of principal component analysis for interpreting ground-water hydrographs, Ground Water, 38, 234-246 https://doi.org/10.1111/j.1745-6584.2000.tb00335.x