References
- M. C. E. Rosas-Orea, M. Hernandez-Diaz, V. Alarcon-Aquino, and L. G. Guerrero-Ojeda, 'A Comparative Simulation Study of Wavelet Based Denoising Algorithms,' in Proc. 15th, Int. Conf. Electronics, Communications and Computers, pp. 125-130, 2005
- D. L. Donoho and I. M. Johnstone, 'Adapting to unknown smoothness via wavelet shrinkage,' J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1200-1224, 1995 https://doi.org/10.2307/2291512
- D. L. Donoho, 'De-noising by soft-thresholding', IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627, May 1995 https://doi.org/10.1109/18.382009
- M. Lang, H. guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, 'Noise reduction using and undecimated discrete wavelet transform', IEEE Signal Processing Lett., vol. 3, no. 1, pp. 10-12. Jan. 1996 https://doi.org/10.1109/97.475823
- Q. Pan, L. Zhang, G. Dai, and H. Zhang, 'Two denoising methods by wavelet transform', IEEE Trans. Signal Processing, vol. 47, pp. 3401-3406, Dec. 1999 https://doi.org/10.1109/78.806084
- P. L. Ainsleigh and C. K. Chui, 'A B-wavelet- based noise-reduction algorithm', IEEE Trans. Signal Processing, vol. 44, pp. 1279-1284, May 1996 https://doi.org/10.1109/78.502342
- C. K. Chui and J. Z. Wang, 'On compactly supported spline wavlets and a duality principle,' Trans, Amer. Math. Soc., vol. 330, no. 2, pp. 903-915, April. 1992 https://doi.org/10.2307/2153941
- A. Grossmann and J. Morlet, 'Decomposition of Hardy functions into square integrable wavelets of constant shape,' SIAM J. Math., vol. 15, pp. 723-736, 1984 https://doi.org/10.1137/0515056
- S. G. Mallat, 'A theory for multiresolution signal decomposition : The wavelet representation', IEEE Trans. on Pattern Recognition and Machine intelligence, vol. 11, no. 7, pp. 674-693, July 1989 https://doi.org/10.1109/34.192463
- I. Daubechies, 'The wavelet transform, time-frequency localization and signal analysis,' IEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 961-1005, Sept. 1990 https://doi.org/10.1109/18.57199
- I. Daubechies, 'Orthonormal basis of compactly supported wavelets,' Comm. Pure Applied Math., vol. 41, no. 7, pp. 909-996, 1988 https://doi.org/10.1002/cpa.3160410705
- H. K. Kwan, 'Tunable and variable passive digital filters for multimedia signal processing,' in Proc. IEEE Int. Video and Speech Processing, pp. 229-232, May 2001
- A. Wroblewski, T. Erl, and J. A. Nossek, 'Bireciprocal lattice wave digital filters with almost linear phase response,' in Proc. IEEE Int. Speech and Signal Processing, vol. 2, pp. 805-808, April 2003
- Y, H. Lee and S. Tantaratana, 'Decision-based order statistic filters,' IEEE Trans. Signal Processing, vol. 38, pp. 406-420, March 1990 https://doi.org/10.1109/29.106860
- L. Yin and Y. Neuvo, 'Adaptive FIR-WOS Filtering,' Proc. of the IEEE Int. Symp. On Circuits and Systems, pp. 2637-2640, May 1992
- T. Chen and H. R. Wu, 'Adaptive Impulse Detection Using Center-Weighted Median Filters,' IEEE Trans. Signal Processing Lett., vol. 8, pp. 1-3, Jan. 2001 https://doi.org/10.1109/97.889633