
匸正 JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.26, NO. IE 2007. 3 pp. 1 〜7

A Study on the Language Independent Dictionary
Creation Using International Phoneticizing Engine

Technology

Chwa-Che니 Shin*, In—Sung Woo,* He니ng—Soon Kang*, In-Soo Hwang*, Suk-Dong Kim*

*Department of Computer Science, Hoseo University

(Received October 19 2006； Revised December 27 2006； Accepted February 7 2007)

Abstract

One result of the trend towards globalization is an increased number of projects that focus on natural language
processing. Automatic speech recognition (ASR) technologies, for example, hold great promise in facilitating global
communications and collaborations. Unfortunately, to date, most research projects focus on single widely spoken
languages. Therefore, the cost to adapt a particular ASR tool for use with other languages is often prohibitive. This
work takes a more general approach. We propose an International Phoneticizing Engine (IPE) that interprets input files
supplied in our Phonetic Language Identity (PLI) format to build a dictionary. IPE is language independent and rule
based. It operates by decomposing the dictionary creation process into a set of well-defined steps. These steps reduce
rule conflicts, allow fbr rule creation by people without linguistics training, and optimize run-time efficiency.
Dictionaries created by the IPE can be used with the Sphinx speech recognition system. IPE defines an easy-to-use
systematic approach that can lead to internationalization of automatic speech recognition systems.

Keywords^ ASR, Unicode, phonetics, orthography, lexicon, phoneme

I. Introduction

Many interesting questions arise when adapting existing

speech recognition systems to languages other than the

original target language [1], The core design of these

systems involves many assumptions that do not hold when

applied to other languages. For example, languages often

use different writing systems, phoneme sets, and rules of

pronunciation. Often, adequate performance requires significant

tuning over time by experts.

In order for a speech reco융nition system to address

additional languages, a number of approaches have been

Corresponding author： Suk-Dong Kim (sdkim@hoseo.edu)

School of Computer Engineering, Hoseo University 29-1 Se이nul-Ri

Baebang-Myun Asan-City Choongnam 336-795, Korea

proposed [2]. Some advocate rebuilding systems from

scratch to create new systems that uniquely suit the

target languages [3], Others prefer rebuilding statistically

based systems aimed at cross language portability [4].

Some systems that rely on machine learning [5] are

dependent on the amount and quality of existing data, an

assumption that doesn't hold for many languages.

Although these approaches have significantly contributed

to speech recognition technology, they are very costly in

that they require linguistics expertise and extensive

redundant development. Globalization necessitates rapid

deployment； therefore an approach that is perhaps better

suited is one that makes the most use of existing

systems. The DIPLOMAT project [6] takes this approach

and successfully adapted its core system for the

A Study on the Language Independent Dictionary Creation Using Intemation기 Phoneticizing Engine Technology 1

mailto:sdkim@hoseo.edu

Serbo-Croatian, Haitian Creole, and Korean languages.

Our approach addresses two important factors required

in any realistic attempt at generalized multilingual ASR.

The first of these issues is user friendliness. Our simple

design provides a user-friendly environment enabling

non-linguistically trained native speakers to utilize the

ASR tools. We rely on the availability of a native

informant and utilize their effective knowledge of the

language, but that person doesn't require formal training in

linguistics or speech recognition. This approach is

different from prior attempts to create language

independent systems [7, 8]. Those attempts generally do

not utilize character sets that are familiar to most native

speakers, neither do they offer grammars that are legible

by non-linguistically trained experts.

The second factor that we address is the need for a

step-by-step language independent phoneticizing process.

Because we want to process an international language as

specific engine (IPE) and want to make the standard PLI,

we deal with separate processing. In speech technology

terms, a language is unique in the way it sounds and in its

script, both of which can be found in its lexicon. The

lexicon is the most localized part of any speech system,

since once we convert speech data to a common character

set, many of the other components of any system need no

further internationalization.

This paper describes our language independent

phoneticizing process that generates a lexicon useable for

speech recognition. This process consists of the following

four steps. These are (a) Transliterating codepoints from

Unicode, (b) Phonetically standardizing rules, (c) Implementing

grapheme to phoneme rules, and (d) Implementing

phonological processes. The application of these steps

takes a Unicode string as input and produces a

corresponding phonetic string, solving the common

character set issue along the way. The discrete

decomposition of the phoneticizing process reduces rule

collisions and achieves sequential rather than global rule

applications, an approach which is significantly more

computationally feasible.

This paper is organized as f시lows. Section 2 describes

our process to create lexicons useable by speech

recognition systems. Section 3 describes the syntax of the

Phonetics Language Identity (PLI) grammar that we use.

Section 4 briefly describes our initial implementation of

the International Phoneticizing Engine which interprets the

PLI grammar. Section 5 describes English and Korean

lexicons that we create to integrate with C전megie

Mellons Sphinx Speech Recognition System [9]. Section

6 evaluates the results of these efforts. Section 7

describes our future goals and concludes the paper.

||. The Four Step Phoneticizing Process

Rule collisions are a major obstacle to successful

rule-based phoneticizing of a language [4]. For this

reason, we divide the process into four well-defined

steps. These step process consists of a Unicode

transliteration followed by normalization of the

orthography, phoneticization of the normalized string, and

finally phoneme clarification. The resulting set of

phonemes is then integrated into an ASR system. Figure 1

illustrates this basic scheme.

The work of phoneticizing a language consists of

creating four rule sets. Unlike machine learning-based

approaches [10], our ultimate aim is not to completely

automate the lexical acquisition process, but rather to

structure it in a way that will allow native speaker (not

necessarily a linguist but computer literate) to make

speech technology multilingual. We will take a closer look

at each of the four steps in the following subsections.

Figure 1. Language Independent Phoneticization in Four Step

Step 1： Transliterating from Unicode to ASCII. Unicode

is now the accepted stand천rd universal character 응

Unicode is a fixed size character set, where e거ch text

element is encoded in 16 bits (UCS—2), which achieves

uniformity across languages. More importantly, the

Unicode consortium [11] has set standards for the

processing of many scripts beyond the capabilities of

ASCII (i.e. Hangul syllable decomposition/composition).

For these reasons, Unicode must be included in 건ny

attempt at language independent lexical acquisition.

The goal of the transliteration step is to map each

target language Unicode code point to an ASCII string.

Transliteration allowsus to create our own, string-based

2 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.26, NO.1E

internal character, well suited for phonetic processing and

conforming to the requirements of existing ASCII based

ASR systems.

Transliterating allows us to extract additional

information contained in text elements. We use to

recognize korean speech using the Sphinx 3 engine, so we

work three steps to process korean character. The first

step is converting from ascii code to unicode. Next,

converting from unicode to intermediate code. The last

step convert from intermediate code to internal code.

ASCII's original design suits American English and

contains a single code point for each letter of the Latin

alphabet. This is inadequate for some languages where one

text element maps to more than one linguistic

phenomenon. For example, in French vowels often carry

diacritical marks. In Hangul each text element is a

syllable, and a text element may carry up to four jamos

(that is, phones). The complexity of the transliteratin융

step varies across languages. It is a trivial step for

phonetic languages with few characters； it is more

involved for languages with extensive ideographic scripts.

Step 2： Standardizing the orthography. Languages carry

in their orthography complexities because they evolve

over time. Often the orthography to sound relationship is

counter-intuitive (i.e. En융lish： "knight” sounds more like

“nite”.) Some languages allow multiple spelling

orthographies for the same word (i.e. Haitian Creole

“pwezidm” and “presidan”). Homophomes (i.e. English

“kmow,” “no”)force the orthography to mark semantic

differences.

These examples illustrate the need for phonetic

standardization so speech technology systems can

establish important script to sound relationships. As in

step 1, the goal of this step is intuitive and self-

explanatory, so a non-linguistically trained native speaker

can perform it.

Step 3： From Graphemes to phonemes. With a

standardized orthography, this step implements basic

grapheme to phoneme mapping, and addresses remaining

context dependent pronunciation combinations. Phoneme

interaction such as nasalization need not be created here

in order； those complexities fall to step 4.

Step 4： Phonological processes. Pronunciation rules

often depend on the complex interactions caused by

creating sounds using the vocal tract. Step 4 differentiates

between allophones, depending on their phonetic context.

Step 4 also eliminates remaining redundancies. For

example, in French, when some identical phonemes are

repeated, only one is pronounced (i.e. "tourette"： T UW R

EH T T T UW R EH T).

III. Phonetic Language Identity (PLI) Grammar

This section describes the grammar that we use to drive

the four step process described in the previous section.

This grammar is in keeping with our goal of simplicity,

modeling the phoneticizing process using locally simple

transformations. Users create text files using the PLI

grammar syntax.

PLI text files contain four sections. Each section is

separated by keywords "#1", “#2", “#3" and "#4” on a

line by themselves. All sections need to be present in the

file and in order. Each section contains a set of rules

which correspond to one of the discrete steps in

transitioning from UnicodeTM to phonetics. The PLI syntax

is the same for all sections： source string [tab character]

target string. PLI processing maps the input source strings

to output target strings. The target strings of one section

are inputs to the next section. All characters following the

characters, //, are treated as comments. We recommend

using comments to improve readability. The following

subsections describe the rules created for each of the four

sections in more detail.

Section #1： Each PLI line contains a UnicodeTM code

point in hexadecimal uppercase followed by a tab

character and the ASCII transliteration code. We refer to

the Unicode code point explicitly (instead of its 16 bit

representation) because this allows the PLI format to be

in standard ASCII, yet makingit able to refer to the

Unicode code point. We recommend users add a comment

(starting with //) containing the actual Unicode text

element after each PLI statement； this allows a degree of

verification. Note that this does not compromise the

assumption that the PLI format is ASCII compliant during

processing. Example PLI Statement： D4AD {pVt} 〃팥

Section #2： These lines contain a transliteration

character string, a tab character, and a standardized

transliteration string. The transliteration character strings

A Study on the Language Independent Dictionary Creation Using International Phoneticizing Engine Technology 3

Table 1. Grouping Variable Syntax int P니

(consonants)={bcdfghjklmnpqrstvwxyz}
//Grouping consonants in one variable

(consonant-sound) = {B K D F G HH JHKLMNPKRS
T V W X Y Z }
//groups consonants s。나nds in one variable

{consonant) [IY] (consonant-sound >
//use the gr。니ping variables in a rule

are produced by section #1 processing. To map the

character <kn, in knight to 'n', we use the PLI statement-

kn n

Section #3： Rules in this section contain the

standardized transliteration strings generated in section

#2, a tab character, and a phoneme string. Two such rules

are： th [TH] and i [AY]

Section #4： These rules contain the phoneme sequence

strings generated in section #3, a tab character, a요d a

final phoneme sequence string. They often eliminate

redundancies. Examples； [G][G] [G] and [X] [K][S]

Reserved Characters are used when creating a PLI files.

For example, we recommend the use of encasing marks

([]{}) to enclose single phonetic units (i.e. a phoneme

AY expressed as [AY], a Hangul syllable 한 expressed as

{han}), although discretion in this matter is left to the

user. The PLI grammar also makes use of two reserved

산laracters, and The ll+Hcharacter (space marker)

represents inter—word spaces. The allows the PLI to

function both as an exception dictionary and a rule based

grammar system. Example： s+i [Z]+ [ay]. Rules that

contain the character (the Null phoneme) express

unpronounced sequences. Example： [HH] + #+

Grouping Variables define enumeration vectors of

syntactical units that can later be referenced as a class.

Using grouping variables eliminates having to explicitly

list each unit individually in PLI rules. Users declare a

grouping variables by enclosing a variable name of choice

within the t<，and<>，symbols. The partial PLI file shown

in Table 1 declares two grouping variables, < consonants >

and <consonant -sound>. The declaration of a grouping

variable must always precede its use (see vconson건nts그

and〈consonant一soimd그 in Table 1.)

Individual elements in two enumeration vectors normally

must have a one—to—one mapping between them because

the physical positions in the enumeration drive the PLI

translation mapping. The Table 1, the <consonants> and

<consonant-sound> variables have the same number of

enumerated elements. The consonant c is mapped to K.

One exception to this one—to—one rule is when the target

does not contain any variables. In this case the entire

expanded source will map to the same target unchanged.

Examples : o<variable> o# and oVvariable거。

Since grouping variables are user-defined, PLI syntax

allows all levels of sophistication. A non-linguist might

just group consonants and vowels together, while a

linguist could create grouping variables for many phonetic

features. The flexibility is powerful enough to

accommodate both linguist and non-linguist users.

IV. International Phoneticizing Engine(IPE)

The IPE, written in Java, is a cross platform interpreter

of the aforementioned PLI format. It is a command line

application that requires a Unicode text file and the PLI

file relevant to the language used in that Unicode file. The

output is a phonetic lexicon that is useable by speech

recognition systems.

The IPE adheres closely to the syntax and detects any

inconsistencies of the PLI it interprets as it encounters

them. Users can specify any or all of the four processing

steps, and can process the PLI in trace mode. A simple to

read output conveniently allows verification of the results.

The IPE sorts all rules in each section in descending

order by the length of the source string. Rules with equal

source string length retain their original order. Sorting

rules permits the more drastic rules to process first, with

other rules to follow. Rules are applied in a left to right

manner.

V. Creating with IPE Generated Lexicons

To test our IPE approach, we created a variety of

phonetic lexicons and integrated them with the CMU

Sphinx Speech Recognizer. In order to create PLI files,

4 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.26, NO.1E

the most frequent words of our text corpus were

chosenbecause most pronunciation phenomena are

encountered in that subset. Secondly, we believe that

using high frequency words produces better results when

applied to natural text. We describe the PLI creation

process in this section.

Korean (Hangul). Two native speakers of Hangul

created this PLI file. Korean presents an interesting

challenge because it has a very large and very different

character set from ASCII, yet it uses a phonetic script

requiring further rules. 900 words were used in building

the PLI.

In section #1, the IPE mapped each Unicode Hangul

phonetic Syllable to a corresponding string of three jamos.

The PLI section #1 file contained 11,179 code points that

the IPE automatically mapped in ten minutes. Section #2
contains 240 complex rules. Because Hangul is a regular

language, each jamo's pronunciation depends on its

position in the 3-jamo wide syllable. There are some

inter syllable interactions that affect the pronunciation and

the corresponding PLI rules were expressed here. In

particular, some composed jamo (where one jamo

represents the ligature of the two other) have

pronunciations entirely dependent on their context. Section

3 only contains one rule that implements three possible

pronunciations depending on the position of the jamo.

Section #4 implemented ten nasalization and deletion

rules.

English. A native speaker and a fluent speaker created

the PLI file. English (expressed in ASCII) offers the

easiest language to import from Unicode. Section #1

required only fifty four rules. TheSection #2 PLI file was

a challenge because English contains so many

pronunciation exceptions. 220 exceptions and 286

standardizing rules required 25 man-hours of work. This

effort illustrates the need for a better rule collision

detection mechanism. Section #3 contains only forty

seven rules due to the large amount of standardization

accomplished in section #2. In section #4, we inserted

rules that took care of tt-ed，)endings, and many rules that

removed unpronounced letters.

In general, we recommend usingPLI section #2 for

rewriting a word in an orthography that is more

phonetically correct. For most languages, this approach

works well. While developing a PLI for English, we altered

this use to also generate phonemes in that same section

(of the 286 standardizing rules, 47.5% contains

phonemes). The phonemes we produce in this section

expresses some sounds using graphemes. Using section

#2 in this way sometimes works well, but can often

produce side effects that are not desirable. Consider the

following four rules：

Rule #1： tion shan

Rule #2： ns+ nz+

Rule #3： ty+ tee+

Rule #4： rite r ayt

The IPE maps the word 'portions" to tlporshans,) using

rule #1, and then to liporshanz,，by rule #2. But “porshanz”

is indeed a decent graphemic for the phonetic end result,

“[P][AO][R][SHHAH][N][Z]".

Now consider the following words “majority” and “vite.”

After applying rule #3, the two words respectively

become “majoritee” and "write.” But after applying Rule

#4 our two words respectively become “majorayte" and

ttwraytJ，This is incorrect. This problem can be overcome

by modifying rule #3 and rule #4 and introducing some

phonetic symbols (ty+ t[IY]+ // Modified rule #3, ite ayt

// Modified rule #4). Using these rules, the words become

majorit [IY] and wrayt, and leads to a correct phonetic

representation.

Other valid approaches are also possible. For example

we could add the words to an exception list.

Unfortunately, this practice will result in PLIs with long

list of word exceptions affecting only the word they

express without contributing to the phoneticization process

of unexpected words in the target language.

VI. Experimental Results

In this section we analyze the results obtained when we

integrated our phonetic lexicons with the Sphinx Speech

Recognizer. Table 2 shows results from comparing our

English recognizer with a hand tuned dictionary which

required several years of work by experts to create. This

experiment utilized a dictionary of 2997 words, 68

A Study on the Language Independent Dictionary Creation Using International Phoneticizing Engine Technology 5

Table 2. Error Rates using English P니 with SPHINX ASR System, Vs.

CMU dictionary 0.5b

Phonetic Acoustic Models Word Error Rates (%)
CMU Dictionary 0.5b 12.11
IPE English: 3072
IPE English with minimal changes * 20.07

시。entries were changed (3 exceptions {kansas, saint, arriving} were add응d

and 7 high frequency words {the, to, what ,a for, from, are} were allowed

alternate pronunciations.)

speakers, and 136 utterances. Our scheme achieved an

initial error rate of 30.72%. Considering the non-cost of

the approach (in time and expenditure), this was a very

good starting point. With minimal expert fine-tuning, we

modified 10 PLI rules to reduce the error rate

significantly to 20.07%. Although this still is far worse

than the hand tuned results, it demonstrates that results

can be dramatically improved with little effort once the

PLI is created.

We next applied our approach to the Korean language

using Sphinx combined with the CMU-Cambridge

Language modeling Toolkit [12]. The text corpus used for

both the language model and the speech data collection

corpus was obtained from publicly available online sites.

The text, obtained in the KSC Wansung encoding, was

converted to Unicode (UCS-2) and broken into sentential

utterances. After the utterances were phoneticized, we

used a minimum preserving scheme to extract a

diphonically rich subset for the recording script. The

training data consisted of 21 hours of speech read by 162

(70 female and 92 male) native Korean speakers. The

pronunciation dictionary was generated with the

aforementioned Korean PLI interpreted by the IPE； it was

used for both the training of the acoustic models and the

recognition tests. The speakers used in the recognition

run (1 female and 1 male) were not included in the

training. The test corpus contains 100 utterances and

(13.11 minutes of speech).

Table 3 shows the results of our Korean experiment. It

would be desirable to compare the robustness of our

newly created Korean acoustic model, with our established

English acoustic model. However, cross-language ASR

system comparisons are difficult. Nevertheless, results

show that the Korean acoustic models perform similarly to

the English model. Since the Korean acoustic model was

built using a pronunciation dictionary automatically created

Table 3. Error Rates 니sing Korean PLI

LM text size: 14358
Dictionary size: 8550
words

Trigram
Perplexity:
6.25
Entropy:
2.64 bits

Bigram
Perplexity:
38.48
Entropy:
8.40 bits

Unigram
Perplexity：
1895.80
Entropy：
10.89 bits

Word Error Rate (%) 8.45 15.67 25.25
Syllable Error Rate (%) 5.54 9.70 16.61

using PLI files and the English acoustic models were

conventionally trained with a handcrafted dictionary, we

believe that this supports our claim that our process is a

viable alternative to handcrafted lexicons.

VII. Conclusions

In this paper, we propose a language-independent

rule-based technology that is able to create a

phoneticized dictionary. This technology is useable by

existing ASR systems and demonstrates significant

promise in facilitating the rapid deployment of speech

recognition capabilities in newly targeted languages.

Our PLI grammar and IPE interpreter implement a

process that enables speech technology to be easily

internationalized. The PLI extracts relevant linguistic

information by partitioning the process into four discrete

steps, thereby reducing computational complexities and

greatly simplifying the procedure. The grammar is

powerful, simple to use, and effectively encodes the

relationship between script and sound*

Simplicity and legibility are the guiding principles of the

design because the ultimate goal is to allow

non-linguistically trained subjects to create PLI data and

thus localize the speech technology efforts. We require

support from native speakers with a basic familiarity with

computers, but we do not require that these speakers to

be linguistic experts. This greatly reduces the cost and

effort required to deploy a speech recognitionsystem.

We demonstrated the effectiveness of our approach by

comparing experimental error rates with those of an

existing English-based speech recognizer. Results show

that although our error rates were higher, they can be

significantly lowered with minimal expert tuning. We also

applied our approach to the Korean language and found

that the error rates were comparable to those encountered

6 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.26, NO.1E

with the English-based system.

Currently we are developing the International

Phoneticizing Studio (IPS). This tool creates an

environment that combines rule resolution mechanisms, a

run-time advisory linguistic expert system, a generic

speech synthesizer for feedback, and a user friendly

graphical user interface. This system will allow native

informants to dynamically create a PLI for any given

language, using the user's knowledge of a language and

using user-friendly tools. As part of our effort, we are

extending PLI to more easily handle multiple

pronunciations and resolve morphological problems where

sentences are not always sequences of discrete words

separated by spaces (i.e. Thai, Farci.)

Acknowledgment

This research was supported by the Academic Research

fund of Hoseo University in 2006 (20060124)

References

1. H.J.M, Steeneken, and L.F. Lamel, "SQUALE : Speech Recognizer
Quality Assessment for Linguistic Engineering", Proceedings ARPA
Workshop on Spoken Language Technology, Plainsboro, New Jersey,
1994

2. J-L. Gauvain and L, Lamel, “Large vocab니ary continuous speech
recognition: Advances and application," Proc. IEEE, 88 (8) 1181-1200,
2000.

3. H.J.M. Steeneken, and L.F. Lamel, “SQUALE : Speech Recognizer
Quality Assessment for Linguistic Engineering", Proceedings ARPA
Workshop on Spoken Language Technology, Plainsboro, New Jersey,
1994.

4. T. Matsuoka, K. Ohtsuki, T. Mori, S, Furui and K. Shirai, “Large-
Vocab니ary Continuous-Speech Recognition Using a Japanese B나siness
Newspaper (NIKKEI)," Proc. Of the ARPA Workshop on Spoken
Language Technology, Austin TX, Morgan Kaufmann, C아len, Ed., 1996.

5. R.l. Damper "Self-learning and connectionist approaches to text-
to-phoneme conversion'*, in Connections! Models of Memory and
Language, Levy J„ Bairaktaris J., Bullinaria J., and Cairns P. (eds.),
UCL Press, London, 117-144, 1995

6. L. Deng, integrated-multilingual Speech Recognition using Universal
Features in a functional Speech Production Model," ICASSP '97,
1007-1010, 1997.

7. R., Federking, A„ Rudnicky, C„ Hogan, Eskenazi, “M. DIPLOMAT,"
ACL-EACL '97, 1997.

8. T.J. Sejnowski, and C.R., Rosenberg, "Nettalk: a parallel network that
learns to read aloud," The Johns Hopkins University Electrical
타)gine审ing and Computer Science Technical Report, JHU/EECS-86/01,
1986.

9. M. J. Bert V. Coile, "The DEPES Development System for Text-

to-Speech Synthesis," ICASSP '89, 250-253, 1989.
10. S. Hertz, "From text-to-speech with SRS," Jourr询 of the Ac아jstio치

Society of America, 1155-1171, 1982.
11. 자ie Unicode Consortium, The Unicode Standard, version 2,0, (Addison-

Wesley Publishing Company, 1996.

[Profile]

• Chwa-Cheul Shin

Chwa-Che니 Shin received the B.S. and M.S. degree in the Dept, of
Computer Engineering from Hoseo University, Asan-city, in 1990, 1996. H은 is
Working on his Ph.D. degree in same University. His current interests are in
Ubiq니it。니s and speech processing system.

• In-Sung Woo

In-sung Woo received the B.S. degree in the Dept, of Computer Engineering
fipm Hoseo University, Asan, in 2000 and M.S. degree from same University
in 2003. He is Working on his Ph.D. degree in same 나niversity. His current
interests are in Ubiq니itous and M니timedia processing system.

• Heung-Soon Kang

Heung-Soon Kang received the B.S. and M.S. degree in the Dept, of
Computer Engineering from Hoseo University, Asan-city, in 1990, 1996. He is
Working on his Ph D. degree in same University. His current interests are in
Artificial intelligence and speech analysis.

• In-Soo Hwang

In-Soo Hwang received the M.S. degree in the Dept, of Computer
타igineering fam Hoseo Univ이8ity, Asan, in 1995. He is Working on his
Ph.D. degree in same University. He is now a pr으sident of ACE Technology
co,LED, and His current interests are in Artificial intelligence system.

• Suk-Dong Kim

Suk-dong Kim received the B.S., M.S., and Ph.D. degrees in Electronic
타igineering from Ajou University in Suwon city in 1982, 1984, and 19아3,
respectively.
Since 1984, He has been with Dept, of Computer Engineering, Hoseo
University, Asan. He is now a professor and his current research interests
include speech recognition, Ubi이uitous and spe으ch analysis. H으 is a member
of the Acoustic Society of Korea.

A Study on the Language Indepem拍nt Dictionary Creation 냐sing International Phoneticizing Engine Technology 7

