DOI QR코드

DOI QR Code

304 스테인리스강의 점소성 특성에 관한 연구

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature

  • 호광수 (계명대학교 기계.자동차공학부)
  • 발행 : 2007.04.01

초록

Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

키워드

참고문헌

  1. K. Tsuzaki, T. Hori, T. Maki, I. Tamura, 1983, Dynamic strain aging during fatigue deformation in Type 304 austenitic stainless steel, Mater. Sci. & Eng., Vol. 61, pp. 247-260 https://doi.org/10.1016/0025-5416(83)90107-6
  2. D. J. Kim, S. W. Nam, 1988, Strain-rate effect on high temperature low-cycle fatigue deformation of AISI 304L stainless steel, J. Mater. Sci., Vol. 23, pp. 1024-1029 https://doi.org/10.1007/BF01154006
  3. M. D. Ruggles, E. Krempl, 1989, The influence of test temperature on the ratcheting behavior of Type SS304 stainless steel, J. Eng. Mater. Tech., Vol. 111, pp. 378-383 https://doi.org/10.1115/1.3226483
  4. N. Ohno, Y. Tabahashi, K. Kuwabara, 1989, Constitutive modeling of anisothermal cyclic plasticity of 304 stainless steel, J. Eng. Mater. Tech., Vol. 111, pp. 106-114 https://doi.org/10.1115/1.3226424
  5. M. B. Ruggles, E. Krempl, 1990, The interaction of cyclic hardening and ratcheting for AISI Type 304 stainless steel at room temperature: I. Experiments, J. Mech. Phys. Solids, Vol. 38, pp. 575-585 https://doi.org/10.1016/0022-5096(90)90015-V
  6. F. Yoshida, 1990, Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature, Int. J. Pressure Vessels & Piping, Vol. 44, pp. 207-223 https://doi.org/10.1016/0308-0161(90)90130-A
  7. E. Krempl, S. H. Choi, 1992, Viscoplasticity theory based on overstress: The modeling ofratcheting and cyclic hardening of AISI Type 304 stainless steel, Nucl. Eng. Des., Vol. 133, pp. 401-410 https://doi.org/10.1016/0029-5493(92)90165-R
  8. L. H. de Almeida, I. Le May, P. R. O. Emygdio, 1998, Mechnistic modeling of dynamic strain aging in Austenitic stainless steel, Materials Char., Vol. 41, pp. 137-150 https://doi.org/10.1016/S1044-5803(98)00031-X
  9. G Kang, Q. Gao, L. Cai, Y. Sun, 2002, Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures, Nucl. Eng. Des., Vol. 216, pp. 13-26 https://doi.org/10.1016/S0029-5493(02)00062-6
  10. 호광수, 2004, 점소성 이론에 의한 변형률 속도 민감도에 대한 연구, 한국소성가공학회지, 제 13권, 7호, pp. 600-607
  11. K. Ho, 2001, Modeling of nonlinear rate sensitivity by using an overstress model, Comp. Model. Eng. Sci., Vol. 2, pp. 351-364
  12. K. Ho, E. Krempl, 2001, The modeling of unusual rate sensitivity inside and outside the dynamic strain aging regime, J. Eng. Mat. Tech., Vol. 123, pp. 28-35 https://doi.org/10.1115/1.1286233
  13. E. Krempl, 2001, Relaxation behavior and modeling, I. J. Plasticity, Vol. 17, pp.1419-1436 https://doi.org/10.1016/S0749-6419(00)00092-9
  14. J. Lemaitre, 2001, Materials behavior models, Academic Press, San Diego, USA

피인용 문헌

  1. A Phenomenological Constitutive Model for Pseudoelastic Shape Memory Alloy vol.19, pp.8, 2010, https://doi.org/10.5228/KSTP.2010.19.8.468