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SLOPE ROTATABLE DESIGNS FOR SECOND ORDER
RESPONSE SURFACE MODELS WITH BLOCK EFFECTS!

SunG HYUN PARK!, BoNG GYUN PARK? AND HEE JIN PARK?

ABSTRACT

In this article it is considered that how the slope-rotatability property of
a second order design for response surface model is affected by block effects
and how the design points are assigned into the blocks so that the blocked
design may have the property of slope-rotatability. If an unblocked design is
blocked properly, it could be a slope-rotatable design with block effects and
this property is named as block slope-rotatability. We approach this problem
from the moment matrix of the blocked design, which plays an important
role to get the variances of the estimates, and suggest conditions of block
slope-rotatability.

AMS 2000 subject classifications. Primary 62K10; Secondary 62K20.
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slope rotatability.

1. INTRODUCTION

A second order mean response surface model with p variables can be written
as
P P P
n(x)=Po+ Y Bizi+ Y Buzi + Y Bz, (1.1)
i=1 i=1 i<y

which may be written in matrix form as n(x) = x'f where

x = (1,21,%2, .. .,Tp, 3,23, . . . ,:clz,,:clxg,aslxg, ey Tp1Tp)
ﬂ = (/807ﬂ1a /82) s 76})7 /3117ﬂ227 v 7/8pp7 /8123 /613a B 7/6])*1])),-
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Observations, y,(x) = n(x) + ey, v = 1,2,...,n, are taken at n selected
combinations of the x variables. The e,’s are assumed to be uncorrelated random
errors with zero mean and constant variance, o2. The ’s are then estimated by
the least squares method, B = (X'X)~1X'Y, where X is the matrix of values of
the elements of x's taken at the design points and Y is the vector of y observations,
and the prediction of response at x is given by: §(x) = x’ B. The prediction
variance, or a variance of a predicted value, is given by:

Var(§(x)) = Var(x'8) = x'(X'X) 'xo?.

One of the important design criteria is the rotatability which was suggested
by Box and Hunter (1957). It means that by restricting the moment matrix of
a design it is possible for the design to have the same variance of the predicted
value at all points which are equidistant from the design center.

Recently, in the design of experiments for response surface analysis, attention
has been focused on the estimation of differences in response rather than absolute
value of the response mean itself. If differences at points close together in the
design region are involved, estimation of the local slopes of the response surface
is of interest. This problem, estimation of slopes, occurs frequently in practical
situations. For instance, there are the cases in which one wants to estimate rates
of reaction in chemical experiments, rates of change in the yield of a crop to
various fertilizers, rates of disintegration of radioactive material in an animal,
and so forth. Then the concept of rotatability needs to be extended to the slope-
rotatability when the object of experiment is estimation of the derivative of the
predicted response with respect to independent variables.

Hader and Park (1978) suggested the slope-rotatable property. This property
means that the derivatives of the estimates with respect to each independent
variables are equally good (same variance) at all combinations of the independent
variables at the point equidistant from the design center, that is, a design is
slope-rotatable if the variances of partial derivatives are only a function of p,
distance from the design center. This property is called slope-rotatability over
axial directions by Park (1987).

By Park and Kim (1992), the conditions for slope-rotatability over axial di-
rections are given by

e Condition 1 :
Var(,@l) = Var(,@z) == Var(/ép),
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e Condition 2 :

4Var(B11) = 4Var([322) == 4Var(Bpp)
= Var(f1) = Var(B13) = - - = Var(Gp-1),

e Condition 3 :
Cov(B;, Bis) = Cov(B;, Bij) = Cov(Bii, Bij) = Cov(Bij, Bjk) =0,
for all4,j,k (i # 7 # k #1).

And quite often, the experimental runs of a design for response surface model
are to be assigned in blocks, in order to account for sources of variation caused
by heterogeneous experimental conditions such as experimental time, batches
used in experiment and so on. But when the blocking scheme is involved in
the experimental design, some properties of the design without blocking may be
lost. Hence there have been plenty of studies concerned with blocked design.
To name a few, there are Khuri (1988, 1991, 1992) and Park and Kim (2002).
In this paper we consider the conditions under which a certain design would be
a blocked design that still has the slope-rotatability. And we call this design a
block slope-rotatable design.

2. VARIANCES OF SECOND ORDER DESIGN UNDER BLOCKING

Consider the second order models with p variables and n observations. And

suppose that experimental runs are assigned into b blocks. Then we have the
blocked model

p p ¥4 b
Yu :ﬁo+2 ﬁzxzu“‘Z ﬂux?u+z ﬁijxiuxju+z Zyl Y€y, U= 1,2,...,n, (2-1)

i=1 i=1 i<j =1

where 7; is an unknown parameter that denotes the effect of the I** block(l =
1,2,...,b), and z,; is a dummy variable which is equal to one if the uth exper-
imental run is in the {** block or zero if not, and €, is a u'® error term whose
mean is 0 and variance is 0. Note that the model (2.1) is given by the following

vector form,
b

y=Boln +X*B+ > mz +e (22)
=1
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where y = (y1,92,---,Yn)’s 2t = (21,221, - .-, 2n1)’ and € = (€1, ¢€2,...,€,)". No-
tice that here X* matrix and B do not contain 1,, column and intercept [,
respectively.

But the model (2.2) is not of full rank because of 1, = E?:l z;. Then let
us now reparameterize this model so that it becomes of full rank. Consider the
parameters 79,71, ..., Tp—1 Where

70 = Po+m,
N-1=M—M", l:2a3a"'7b'

Then we obtain the model

y =1l +X*B +Z7 +¢, (2.3)
where 7 = (71, 72,...,75—1) and Z is a matrix of order n x (b — 1) which is given
by

0
7 =
(&)
where 0 is a zero matrix of order n; x (b — 1) and L = Diag(1,,,1ns,...,1n,)-
Here n; denotes the number of experimental runs in the {** block (1=1,2,...,b)

and 1,, means the vector of ones with n; elements.
It is convenient to write the model (2.3) as

y = tola+X*B+Wr+e (2.4)
=XpB*+ Wt +e

where
X = (1,,X%),
Yo = 1o + 1,21 /n,
W = (I, — J,/n)Z,
B* = (o, B),

here I, is the identity matrix and J,, is the matrix of ones, both of order n x n.
Note that W is of full column rank. The advantage of using W instead of Z is
that the columns of W sum to zero, that is,

1,W=0.
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In Khuri (1988) it is shown that the design blocks orthogonally if and only if
X'W =0,

or equivalently
X' (I, = Jn/n)Z = 0.

To obtain estimators of the response surface coefficients from the blocked model
(2.4), let

o:(f),r:mjwy

Then we get the least squares estimator of @, that is given by,
6= ('n)'ry. (2.5)

The u fitted response from the model (2.4) is :

14 P D b—1

N 4 A 5 92 A A

Gu(X) = 2o + E BiTin, + E Biizi, + E Bii TiuTju + E wuT, v=1,2,...,n,
i=1 i1 i<j =1

where w,; is the u'* row and " column element of W and 7 is the [** element
of 7. Then the first derivative with respect to i independent variable is given
by :

0y(x - . P )
——%i) :/8i+2ﬁii$i+2ﬁij$j, 1=1,2,...,p. (26)
J#i
Note that only the variance of B* is concerned with the variance of 84(x)/8z;. If

we know Var(f*) of a blocked design, the conditions of slope-rotatability would
be drawn for a blocked model.

From (2.5) it can be shown that :

Var(0) = (I'T ) 102 (2.7)
-1
[ A1 Ap 2 (B B2} o
= , o=, o?,
Aly Ay Bi; B

Ay A
F,F = ( ! A. 9
12 22,

where
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and

n 1/X* o’
A= (X*,ln XZ,X*> , Ag = (X*IW) , Agg = W'W.

Here it is known that:

Bi = (A1 — ApAs AL, (2.8)
Bi2 = —(A11 — ApAL AL TARASLY,
B = Ay + An Al (A — ApAj Al TTARA,.

It is noticed that only By; part is needed to calculate Var(8*), and the other
parts of the variance (B12, Bag) do not affect the variance of the derivative of
(2.6).

If a design has the property of slope-rotatability over axial directions when
the experimental runs of it are assigned in blocks, it is defined as a block slope-
rotatable design over axial directions. Now we derive the conditions of block

~

slope-rotatability over axial directions, by using the Var(8*) of the blocked design.

3. BLOCK SLOPE-ROTATABILITY

Now consider an experimental design which has a symmetric moment matrix
for a second order model such as:

1 . A2y,
Mol . .
lX’X — 2 /4 ,
n )\21,, . (C — 1))\4Ip + )\4Jp .
: : >\4Ip(p—1)
2
where Ap = [i2], My = [i252], eM\q = [i4], [i%]= Lz /n, 1253 =3"" xfux]?u/n,
[ =30 _ 2t /n, forall i,j =1,...,p, and - means zero vector or zero ma-

trix. Many types of experimental designs including factorial design and central
composite design (CCD) have a symmetric moment matrix. From now on, we
only concentrate on the designs with symmetric moment matrix.

THEOREM 3.1. Consider an unblocked design which has a symmetric mo-
ment matriz. If the blocking rule satisfies the following conditions, the design is
a block slope-rotatable design over axial directions.
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Foralll=1,...,b,

[, =0, foralli=1,...,p, (3.1)
[ij]; =0, forall 4,5 (i #j)=1,...,p, (3.2)
UW(W'W)'W'U = I, + p2Jp, (3.3)

(1 _ l) 1 41 ! L34

p/(e=DA—p1  p—npA+ (c+p—DAa—p—ppuz  4nAy’
where [i]; and [ij]; mean block design moments of variable i and variables i and
7 in block I, that is, [i]; = > ,c; Tiu and [ij]; = > ,c; TiuTju, respectively. And U
is the pure quadratic part of X which is an n X p matriz and i, pe are given
constants. The condition (3.3) means that partial moment matriz of the pure
quadratic part of the blocked design is to be a symmetric matriz with identical
diagonal elements and identical off-diagonal elements.

PROOF. By the conditions (3.1) and (3.2),

0p+1
Xw=| UW [, (3.5)

Op(:o—l)
bl

Hence by using (2.8), Bj; of the equation (2.7) is given by,
Bi = (A — X'W(W'W)'wX) L.
By the condition (3.3), we can show that Aj; — X'W(W/'W)"1WX is

n . n)\z 1;,
’I’L)\le .
nil, - &I, +&J, . ’
. . n)\41p(pT_1)

where & = (¢ — 1)A\qy — p1 and & = Mg — po. Thus, it can be shown that By is
given by :
(50 . 71511;)
1
&L . .
nd, L, - 921, + 53.],, . ’

1
n—MIp(p—l)

2
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where
1 1 1 1/1 1
do = %(51 +pé2), 61 = E(—&), 0y = & 03 = ’ (5 - a) ,
¢ = —npAj + &1 + péa.

From the equation (2.7), we have Var(8*) = Bi102. Observing the elements
of B11, we can verify the fact that the variances of ﬁz and Bij are invariant under
this type of blocking, and covariances of (3;, Bi), (ﬁAl, ﬁAU) and (Bu, Bu) still remain
zero. Only the variances of 3; and covariances of (Bu, Bjj) are changed. i.e., the
conditions 1 and 3 of slope-rotatability over axial directions for the blocked design
are satisfied. We have only to check out the Condition 2.

Among the variances of the blocked design, Var(3;) and Var(3;;) are given

by,
Var(3;;) = (82 + 83)0%, i=1,2,...,p,
[

Var(8;;) = o 5,j=1,2,...,p, (i #J).

and then by the condition (3.4)

4Var(B;;) = 4Var(d; + 83)0* = 4Var (5—11 + %(é _ é)) 52

1 1 1 1 )
= 4Var({1- - +- a
g (( p)(c — DM~ p—npA+ (c+p—Dh—m -puz)
= Var(ﬁij).

Hence, a design satisfies the conditions of slope-rotatability over axial directions
for the blocked design. Thus the design which satisfies all the above conditions
is a block slope-rotatable design over axial directions. In addition, if a design
is blocked orthogonally, it becomes also a block slope-rotatable design over axial
directions with X’'W =0 (.- U'W = 0 in (3.5)). O

4. ROTATABILITY AND SLOPE-ROTATABILITY FOR CENTRAL
COMPOSITE DESIGNS

The central composite design(CCD) is a design widely used for estimating
second order response surface. It is perhaps the most popular class of second
order designs. It involves the use of a two-level factorial (or fractional factorial)
combined with 2p axial points and center points such as:



SLOPE ROTATABLE DESIGNS WITH BLOCK EFFECTS 165

Factorial Points Axial Points Center Points
1 I Tp Al T Tp Ty xTo Tp
-1 -1 .- =1 - 0 0 o --- 0
-1 -1 .- 1 o 0 0 :

-1 -1 --- -1 0 —«o 0 0 0 0
-1 -1 --- 1 0 —«a 0
1 1 ... 1 0 0 - @

As a result, the design involves, say, F = 2P factorial points (or F = 2P~k
fractional factorial points), 2p axial points and ng center points. The CCDs were
first introduced by Box and Wilson (1951).

A rotatable design is one for which NVar[fj(x)]/o? has the same value at
any two locations that have the same distance from the design center. In other
words, NVar[jj(x)]/o? is constant on spheres. The rotatability property was first
introduced by Box and Hunter (1957).

It is well-known that the condition for a CCD to be rotatable is that

a = F/4,

This means that the value of « for a rotatable CCD dose not depend on the
number of center points.

Hader and Park (1978) proposed an analog of the Box and Hunter rotatability
criterion, which requires that the variance of 9y(x)/0z; be constant on circles
(k = 2), spheres (k = 3), or hyperspheres (k = 4) centered at the design origin.

Estimates of the derivative over axial directions would then be equally reliable
for all points x equidistant from the design origin. They referred to this property
as slope rotatability, and showed that the condition for a CCD to be a slope-
rotatable design is as follows:

[2(F + ng)]e® — (4pF)a® — Fn(4 — p) + pF — 8(p — D)ot
+[8(p — 1)F?a? — 2F?%(p — 1)(n — F) = 0.

5. SLOPE-ROTATABILITY FOR CENTRAL COMPOSITE DESIGNS UNDER
BrockiNnG

Especially by adjusting the axial value «, a CCD would have a certain prop-
erty, such as rotatability or slope-rotatability. It is of interest to find out such «
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that makes the block slope-rotatable design over axial directions.

Let us consider a CCD with 3 variables and 2 blocks in which the factorial
points are assigned in block 1, and the axial points and 2 center points are assigned
in block 2. The design matrix is given by

Block 1 Block 2
1 T2 3 Tl 2 T3
-1 -1 -1 - 0 0
-1 -1 1 o 0 0
-1 1 -1 0 -« 0
-1 1 1 0 a 0
1 -1 -1 0 0 —«
1 -1 1 0 0 «
1 1 -1 0 0 0
1 1 1 0 0 0

By the condition (3.3) of block slope-rotatability,
U'W(WW)'W'U = L—ll(a2 — 4)2J3,

and we can find that p1 = 0 and ug = (1/4)(a®—4)2. If the axial point coordinate
value « is the solution of the equation 4Var(f;) = Var(,B;j), it can be a block
slope-rotatable design over axial directions. For this example a = 2+v/2 satisfies
the condition of block slope-rotatability over axial directions. The Bj; matrix
for this example is given by

5 3 3 . _44+a? 41
32 T 207 T 202 . 20t 13
B = ) 8+2a§I3
11 _4t+a?q . 1,4+ .13
401 3 2023 T 304+3

For the CCD with two blocks like the above example, the value of «, which
makes a block slope-rotatable design over axial directions, can be easily obtained
from the following equation in Theorem 5.1.

THEOREM 5.1. Suppose the experimental points of a CCD are assigned in
two blocks as follows :
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Tr1 X9 Tp
-1 -1 -1
-1 -1 1
-1 -1 -1
Block1 -1 -1 --. 1 2P factorial points
1 1 -1
1 1 1
0 0 0 ng, center points
—« 0 0
a 0 0
0 —a 0
Block 2 0 o 0 2p axial points
0 0 -
0 0 o
0 o - 0 ng, center points

where

ng, = number of center points in Block 7, i = 1,2, (ng, > 0, ng, + ng, > 0),
ne = 2P = number of factorial points (or corner points) of a CCD,

n1 = 2P 4+ ng, = number of points in Block 1,

ng = 2p + ng, = number of points in Block 2,

n = ni + ne = total number of points.

Then the a that makes a CCD be a block slope-rotatable design over azial direc-
tions is given by the positive solution of the following, which is the 4" polynomial
equation of a :
nlf+(p—2)g]—(p-1)* _ 1
(f —){nlf +(p— g —pe?}  4n.’

(5.1)
where

e = nc+2a2,

2

f=nc+2a*— (2ni10” — nane)?,

nning
1
(2n0°

g = ne— — ngne)t.

nning
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PROOF. From the given blocked design, it can be easily shown that for [ =
1,2,

[i, =0, foralli=1,...,p,
lij], = 0, forall 4,5 (i £ j) =1,...,p.

To show that the given blocked design satisfies the condition of slope-rotatability
over axial directions, it is enough to show that 4Var(8;;) = Var(f;;).
Here W matrix is :

9 ln n On
W= (I, - =2 ™ =™
( T Jn/n)z n (Onz) + n (1n2)

and W/W = njny/n, then from the equations (2.7) — (2.8) we can show that

Bi = (A1 — ApAgAYL) 7!
= (A - UWWW)"'w'u)~

and

/
n elp

An - UIW(W,W)_1W,U = 6]..;0 ’ (f - g)Ip + ng ) ’

npr(p—l)
2

which makes the symmetric form. After taking the inverse of the above matrix,
from B11 we can derive the fact that :

n[f +(p—-2)g - (p-1e’
(f =g {nlf+ (0 —1)g] — pe?} "’
Var(8i;) = nia2.

(+

Var( Bn) =

It is obvious that «, which is the positive solution of (5.1), satisfies the condition:
4V&I‘(,éu) = Var(/éij).

Thus it makes a block slope-rotatable design over axial directions. (]
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Table 5.1 and Table 5.2 show the values of a which satisfies the conditions
of the block slope-rotatability over axial directions with two variables and three
variables respectively. In the table ‘-’ means that there exists no value for the
corresponding case. From these tables we derive the fact that the value of a for
block slope-rotatable over axial directions for CCD is a function of the number
of blocks as well as a function of the number of center points. By increasing the
number of center points, the value of « can be decreased.

TABLE 5.1 The values of & for CCD with b =2 and p = 2

Slope- Block-
n ng Rotatable n1  ne slope-
rotatable rotatable
9 1 1.414 2.090 5 4 -
4 5 2.213
10 2 1.414 1.984 6 4 -
5 5 2.135
4 6 2.000
1 3 1414 1.911 7 4 -
6 5 2.081
5 6 1.944
4 7 1.911
12 4 1.414 1.859 8 4 -
7 5 2.042
6 6 1.906
5 7 1.864
4 8 1.861
13 5 1.414 1.820 9 4 -
8 5 2.013
7 6 1.880
6 7 1.834
5 8 1.820
4 9 1.829
14 6 1414 1.791 10 4 -
9 5 1.991
8 6 1.861
7 7 1.813
6 8 1.794
5 9 1.792
4 10 1.807
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TABLE 5.2 The values of a for CCD with b=2 andp =3

Slope- Block-
m no  Rotatable rotatable moon régtg (fl;le
15 1 1.682 2.432 9 6 -
8 7 2.632
16 2 1.682 2.339 10 6 -
9 7 2.532
8 8 2.378
17 3 1.682 2.268 11 6 -
0 7 2.452
9 8 2.314
8 9 2.272
18 4 1.682 2.213 12 6 -
11 7 2.389
10 8 2.264
9 9 2.223
8§ 10 2.213
19 5 1.682 2.172 13 6 -
12 7 2.340
1 8 2.227

10 9 2.186
9 10 2.172
8§ 1 2.176

20 6 1.682 2.139 14 6 -
13 7 2.300
12 8 2.197

11 9 2.158
10 10 2.142
9 1 2.140
8 12 2.149

6. COMPARISON WITH BLOCK ROTATABLE CENTRAL COMPOSITE
DESIGNS

Khuri (1991) researched the conditions of block rotatability which means that
the blocked design has a rotatable property. It was focused on the conditions
of block rotatability when the unblocked design is rotatable central composite
design. As a result, since the specific a is already selected for the unblocked
rotatable CCD, the value of « is not changed under the blocking. A CCD with
3 variables and 6 center points is given as an example, which can be written as :
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rKT X2 X3
(-1 —1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1

1 -1 1

1 1 -1

1 1 1

a 0 0
D=|-a 0 0
0 a 0
0—a O

6 0 «

0 00—«

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

| 0 0 0

Note that this CCD is rotatable when the value of « is 1.682. On the other hand,
the condition of slope-rotatability is satisfied only when a = 2.139 as shown in
Table 5.2.

By Khuri (1991), the following blocked design is a block rotatable CCD with
a = 1.682.

Block 1 Block 2 Block 3

T xI9 I3 I ) I3 I T2 X3
-1 -1 -1 1 1 1 a 0 0
1 1 -1 1 -1 -1 - 0 0

1 -1 1 -1 1 -1 0 o 0
-1 1 1 -1 -1 1 0 —«a 0
0 0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 0 —«o
0 0 0

0 0 0
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In comparison with the previous result, under the same blocking rule, the condi-
tions of block slope-rotatability over axial directions are satisfied when a is 2.197.
Table 6.1 summarizes the above results.

TABLE 6.1 Comparison with block rotatable CCD with p = 3

Design property Block Size n a
rotatable - 20 1.682

slope-rotatable - 20 2.139

block rotatable ny=6n=6,n3=8 20 1.682

block slope-rotatable over azial directions n1 =6,n2=6,n3 =8 20 2.197

7. CONCLUDING REMARKS

In general, the slope-rotatability property is not preserved when the experi-
mental points of a design are assigned in blocks. However, there exist the condi-
tions under which the experimental runs of a design are assigned in blocks, then
the blocked design has a slope-rotatability property. Such design is defined as a
block slope-rotatable design.

When a design which has a symmetric moment matrix, for example, central
composite design, icosahedron and dodecahedron with center points, satisfies the
conditions of block slope-rotatability, it can be a block slope-rotatable design over
axial directions.

Especially if the experimental runs of a central composite design are assigned
into the blocks in this way, there exists an axial point coordinate value « that
makes this design be a block slope-rotatable design over axial directions.
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