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A SIGN TEST FOR UNIT ROOTS IN A SEASONAL
MTAR MODEL'

DonG WAN SHIN' AND SEI JUNG PARK?

ABSTRACT

This study suggests a new method for testing seasonal unit roots in a mo-
mentum threshold autoregressive (MTAR) process. This sign test is robust
against heteroscedastic or heavy tailed errors and is invariant to monotone
data transformation. The proposed test is a seasonal extension of the sign
test of Park and Shin (2006). In the case of partial seasonal unit root in an
MTAR model, a Monte-Carlo study shows that the proposed test has better
power than the seasonal sign test developed for AR model.
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1. INTRODUCTION

Asymmetry in time series data has attracted considerable attention from
many researchers. To accommodate the asymmetry, Enders and Granger (1998)
adopted the threshold autoregressive (TAR) model and proposed a modified ver-
sion of the TAR model, the momentum TAR (MTAR) model, which consists of
two regimes of autoregressive processes depending on levels of previous changes of
the time series process. For MTAR models, various tests for unit roots hypothe-
sis were developed by Enders and Granger (1998), Caner and Hansen (2001) and
Shin and Lee (2003), which are based on the ordinary least squares estimator
(OLSE). But such OLS-based procedures are neither invariant to monotone data
transformations nor robust against heteroscedastic or heavy-tailed errors. Camp-
bell and Dufour (1995) and So and Shin (2001) suggested invariant and robust
sign tests for unit roots for AR processes.
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All the above studies dealt with nonseasonal models. Unit root inference
in seasonal models would be also important as indicated by many studies of
Dickey et al. (1984), Hylleberg et al. (1990), and others on seasonal unit root
tests. For MTAR models, Shin and Lee (2003, 2007) developed seasonal unit root
tests using instrumental variable approaches. However, they addressed neither
robustness nor invariance.

The purpose of this study is to develop a robust sign test for seasonal unit
roots in an MTAR model following the spirit of the sign test of Park and Shin
(2006). Invariance and consistency of the test is established and a Monte-Carlo
study shows that the proposed test is robust against heavy-tailed and / or con-
ditional heteroscedastic errors. It also reveals that the power of the test is better
than the general sign test for unit roots developed for AR model.

Section 2 introduces a robust sign test for seasonal unit roots for an MTAR
process. Section 3 compares the proposed test with the seasonal version of the
test of So and Shin (2001) via a Monte-Carlo study. Section 4 concludes this
study with summary.

2. AN MTAR PROCESS AND A SIGN TEST
Consider an MTAR model defined as

Agyr = p1(Ye—q — )1t + p2(ye—aq — p)los + uy, (2.1)

where d > 0 is given integer such as 1,4,12 and others, {y;}~; is the set of
observations, Agys = i —y¢—d, J1¢ is the indicator function of the event {Agy;—1 >
A}, Ais a given constant, Is, = 1—I14, p; € (—2,0), ¢ = 1,2, p is an unknown mean
parameter and {u.} is an error sequence. If p; = p2 = 0, y; is nonstationary. If
there is partial unit root (p1 = 0,—2 < p2 < 0) or (-2 < p; < 0, p2 = 0), then y;
has dynamic asymmetric and, according to Lee and Shin (2001), y; is stationary.

When d = 1, model (2.1) is a nonseasonal model and is related with the model
of Caner and Hansen (2001). We consider general seasonal case d > 1. For the
error term, we assume the following:

(A1) {u}p; are independent and identically distributed (i.i.d.) having con-
tinuous distribution which is symmeltric about zero.

We are interested in testing the null hypothesis of unit roots Hy : py =
p2 = 0 against the alternative hypothesis H; : p1 < 0 or p2 < 0, which state
nonstationarity and stationarity of y;, respectively.
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We define the sign function and discuss an identity related with the sign
function, from which a sign test is constructed. If z # 0,sign(z) = =/ | ¢ | and
sign(0) = 0. By (Al), EJsign(ut)] = 0. Therefore we obtain

E; = Elsign(Aqyi(ye—a — 1) Lit)],

which is zero if p; = 0, i = 1,2. The sample analogues of Es are

n

Di= ) sign(Aqye(ye—q — me-a)li), i=1,2, (2.2)
t=d+2

where my is the sample median of {yk}fczl as a Fi-measurable function estimating
@ and F; is the o-field generated by v, v¢—1,.... The adjustment y,_q — my_q is
called a recursive median adjustment. It is a median version of the recursive
mean adjustment of Shin and So (1999, 2001) which significantly reduces biases
of estimators of unit roots and improves powers of unit root tests and seasonal
unit root tests. Note that D; measures a departure of p; from 0. We construct
our test, D say, so that it rejects Hy against Hy if D1 < ¢ or Dy < ¢ for some c.
The critical value can be obtained from Theorem 2.1 below, which states the null
distributions of D;, Dy. We need two preliminary lemmas in order to establish
Theorem 2.1. Proofs of all lemmas and theorems are omitted.

LEMMA 2.1. Under (A1) and Hy, E(D;) = 0,Var(D;) = (n—2)/2, i=1,2.

LEMMA 2.2. Let {s:}}, be i.i.d. random variables with P(s; = 1| F4_1) =

P(si=—1|F1)=1/4,P(st =0 | Fiu1 ) = 1/2. If we let Sp, = Zst, then
t=1
[P(Sy, =x) = (n2+"x)4‘”, r=-n,-n+1,...,0,...,n—1,n].

Note that sign(Agyi(ye_qa — my_q)Iit) takes one value out of 1,0, -1 with
probabilities (1/4), (1/2), (1/4) respectively, for ¢ = 1,2. Under Hp and (Al),
applying Lemmas 2.1 and 2.2 with sign(Agy:(yt—q — m+—q)1it) in place of s;, we
get the null distribution of D;, i = 1,2, given below.

THEOREM 2.1. (Exact null distribution). Consider (2.1) with (A1). Under
HO:

i) The distribution of D; is the same as that of Sp_gq—1, © = 1,2.
" 4i) D1, Dy are independent.
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Theorem 2.1 shows that the proposed test statistic has non-standard null
distribution, for which Park and Shin (2006)’s method can be used in computing
the probability distribution function.

Two test statistics D; and D, are independent and have the same null distri-
bution. Therefore our level-a test rejects Hy against H; if Dy < ¢q or Do < cq,
with an integer ¢, satisfying

P(Sn_d_lgca):l—vl—a.

If sample size n is large, we can use asymptotic normality instead of the exact
null distribution for computing critical values.

REMARK 2.1. (Asymptotic distribution). Under (Al) and Hp, as n —

00, y/(n—2)/2D; and /(n — 2)/2D; have independent standard normal dis-

tribution.

Park and Shin (2006) confirmed asymptotic normality by computing numer-
ically quantiles of the exact and the asymptotic distributions for n = 100 and
also showed that their proposed test satisfies invariance property for a monotone
data transformation and consistency property under a weak condition. We show
that these properties also hold for our proposed seasonal sign unit root test for
seasonal model.

THEOREM 2.2. (Cousistency). Consider model (2.1) with Hy. Let uy = i€
where vy is Fy-measurable positive sequence, € is i.i.d. random process with a
distribution function Fy. Let m be the median of the distribution of y; and let

hit . . )
¥ = E[(1 - 2F(7:))szgn(yt_d —m)Lit], hi = —pi(Yt—a—p), i=1,2.

If y+ has no atoms at m and (1 < 0,p1 < 0) or (Y2 < 0,p2 < 0), then,
P(D1<cy or Dy<cy)—1 as n— o0, for a€(0,1). (2.3)
THEOREM 2.3. (Invariance).

i) If f is a strictly monotone function, the values of Dy, Dy are invariant to
a data transformation y¢ — f(y:) in that (D1, D2) constructed using f(y:)
in place of y; has the identical value with (D1, Dy) constructed using y.
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it) Let gt—1(-) be a monotone F,_1-measurable function satisfying
Elsign(ge—1(ut)) | Fe—1] = 0.

Then the exact null distribution of D1, D2, is invariant to the change of the
error distribution u; — gi—1(uy) in that the null distribution remains the
same if ug in (2.1) is replaced by gr—1(uz).

The proposed method is valid even if the observed series is an unknown mono-
tone transformation of an MTAR process under general heteroscedastic or heavy-
tailed errors. Theorem 2.3 states that the values of Dy and Dy do not change by
monotone data transformation of the observation y; and test statistics Dy and Dy
have the exact null distribution given in Theorem 2.1 under general conditional
heteroscedastic or heavy-tailed errors.

3. A MoNTE-CARLO STUDY

For the MTAR model, we compare size and power of the proposed sign test
with those of the seasonal version of the test of So and Shin (2001). We consider
model

Aaye = pr(ye—a — 1)t + p2(ye—a — 1) Iae + 1wy

along with the quarterly case d = 4 and the monthly case d = 12. The thresh-
old parameter A is set to zero. For the error term, we consider homoscedas-
tic error u; = & and autoregressive conditional heteroscedastic (ARCH) error
Uy =€4/1+ 0.6ufﬁ 4~ The i.i.d. error terms €; have one of the following distribu-
tions: the standard normal distribution N{0,1); the variance mixture VM(1,10),
say, of two normals 0.9N(0,1) + 0.1N(0,10); the t—distribution with 3 degrees
of freedom, ¢(3); or the standard Cauchy distribution. Compared to the normal
distribution N(0,1), distributions VM(1,10), ¢(3), and the Cauchy distributions
have heavier tails.

For each parameter combination, we simulate 10,000 independent series with
n = 100, yo = 0, and g = 0. We compare the proposed sign test D for the
MTAR model with the seasonal version S of the sign test of So and Shin (2001)
developed for AR model, given by

n

S = E sign(Aqye(Yr—a — Mt—d))-
t=d+1

Nominal size is set to 5%.
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TABLE 3.1. Empirical sizes(%) and powers(%) of level 5% tests for quarterly case of d=4

Dist. of Homoscedastic error
€ N(0,1) VM(1,10) t(8) Cauchy
4 P2 D S D S D S D S
0 0 64 46| 68 46| 65 42| 65 4.7
0 —00t| 69 49| 76 54} 78 5. 22.7 15.7
0 —0.10 [ 20.1 139|279 185 | 33.1 21.8 ] 832 64.6
0 -0.50 | 83.0 59.5 | 885 674 91.2 711 987 871
0 —0.90 | 98.2 851 | 985 86.8 | 98.7 86.5 | 994 904
—-0.01 -0.01 8.0 6.4 8.1 5.8 9.0 6.5 | 346 357
-0.01 -0.1 202 155 | 27.0 196 | 32.7 249 | 83.6 788
—-0.01 -05 |89 618|879 691|913 733|985 923
—001 -09 |982 862984 871 986 883|994 930
7.6 .
3.7 .
2.4 .

Dist. of Heteroscedastic error
€ N(0,1) VM(1,10) t(3) Cauchy
p1 p2 D S D S D S D S
0 0 6.5 44 6.8 4.6 6.3 4.4 6.4 4.8
0 -0.01 7.2 53 8.9 6.3 ) 118 8.5 1 59.2 474
0 —-0.10 | 247 16.2 | 43.0 29.3 | 54.7 375 | 87.0 75.5
0 —0.50 | 864 64.0 | 92.1 723 | 945 76.8 | 93.7 842
0 —0.90 | 980 84.3 | 98.6 858 | 98.8 86.5 | 97.8 86.6
-0.01 -0.01 8.1 5.7 | 11.0 9.1 | 154 138 | 776 79.8
-0.01 -0.1 25.0 185 | 41.7 33.2 | 53.3 449 ;892 924
-0.01 -0.5 858 66.0 | 91.5 758 | 93.9 80.1 | 93.7 949
-0.01 -09 98.5 86.4 | 98.7 87.6 | 987 887 | 97.5 949
-0.1 -0.1 31.0 3601 509 595|648 73.11939 969
-0.1 —0.5 829 777904 886 | 925 926 ] 958 979
—0.1 —-0.9 976 926 [ 98.1 945 1984 963 | 979 989

Empirical sizes and powers are reported in Table 3.1 and Table 3.2. Empirical
sizes of the two tests are reasonably close to the nominal level 5% in both cases of
homoscedasticity and heteroscedasticity. In any case, these results enable us to
compare empirical powers of the two tests D and S without any size adjustments.

We now investigate empirical powers of the tests. First consider the quarterly
case of d = 4. Consider the homoscedastic cases. For error distributions N (0, 1),
VM(1,10), and ¢(3), D is more powerful than S, except for symmetric cases
p1 = pg. For example, if p1 = 0,p2 = —0.1 under the error of #(3), empirical
power value of D is 33.1% while that of S is 21.8%. On the other hands, under
the symmetric case p; = p2 = —0.1 and the same distribution ¢(3) for &, D is
less powerful than S. The power value 39.6% of D is smaller than that 48.0% of
S. It is clear that power performances of D depend on the differences of the value
of p}s. That is, under the symmetric case, powers of D and S are relatively close
to each other. However, power advantage of D over S tends to increase as po
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TABLE 3.2. Empirical sizes(%) and powers(%) of level 5% tests for monthly case of d=12

Dist. of Homoscedastic error
I N(0,1) VM(1,10) t(3) Cauchy
41 P2 D S D S D S D S
0 0 5.1 3.3 5.8 3.3 5.4 3.6 5.1 3.5
0 —0.01 5.8 4.0 6.0 3.9 6.0 3.5 8.2 5.7
0 —0.10 | 11.1 7.8 1 129 9.0 { 151 104 | 39.9 268
0 —-0.50 | 62.0 43.1 | 69.3 478 | 725 51.8 | 8.4 69.7
0 —0.90 { 90.9 722|916 740 | 92.5 746 | 95.3 78.6
-0.01 -0.01 6.2 4.0 6.1 4.2 6.2 44 | 114 101
—-0.01 —o0. 11.9 88 | 136 104 | 152 11.7 | 419 36.3
—-0.01 -0.5 625 444 1 68.9 488 | 729 534 ] 8.9 759
-0.01 -0.9 90.8 74.1 | 915 749 | 925 76.1 | 949 829
—-0.1 -0.1 146 149 | 187 19.6 | 21.8 242 | 585 70.7
-0.1 -0.5 61.0 569 | 67.6 655 | 727 705 | 90.1 93.7
-0.1 —-0.9 894 825|905 839 ] 921 867|953 953
Dist. of Heteroscedastic error
E¢ N(0,1) VM(1,10) t(3) Cauchy
41 p2 D S D S D S D S
0 0 5.1 3.4 5.4 34 5.6 3.3 5.2 3.5
0 —0.01 5.9 4.0 4 4.1 7.2 51 | 41.7 31.9
0 —-0.10 } 12.2 871210 146 | 288 199 71.3 57.7
0 —0.50 | 675 46.8 | 76.9 572 | 80.5 61.6 | 8.1 75.1
0 —0.90 | 91.0 73.1 922 746 | 93.0 747 | 91.8 775
—-0.01 -0.01 5.8 3.9 7.5 5.2 8.5 6.8 | 62.6 59.6
—-0.01 -0.1 13.1 9.3 206 166 | 285 235 ] 804 782
-0.01 -0.5 677 49.2 | 76.3 588 | 81.0 64.6 | 91.0 89.0
-0.01 -0.9 914 745|919 758 | 928 784 | 925 89.7
—-0.1 —-0.1 18.2 19.3 | 30.9 348 | 425 476 | 8.0 90.5
-0.1 -0.5 66.2 626 | 761 761 | 8.6 826 ] 947 96.0
-0.1 -0.9 89.6 835 | 915 878 | 92.7 904 | 95.0 96.2

goes away from p;. For example, if p; = 0 and py = —0.5, the power value 83.0%
of D is substantially greater than that 59.5% of S. For all errors, D dominates
S in power performance for all the cases of partial unit root, i.e., p;y = 0. This
implies that the proposed test performs particularly well under a partial unit root
situation. For heteroscedastic errors, similar situations happen. Power advantage
of D over S gets larger as | p1 — p2 | increases. For example, when p; = 0 and
the distribution of &, is VM(1,10), as po varies from —0.01 to —0.90, power value
of D increases considerably from 8.9% to 98.6% and D performs better than S.

Next consider the monthly case of d = 12. Similar situations happen although
relative magnitudes of powers are smaller than those of case d = 4. First, for
homoscedastic errors, D is more powerful than S, except for symmetric cases
p1 = p2 = —0.1. If p; = 0,p2 = —0.1 under the error of #(3), for example,
empirical power value of D is 15.1% while that of S is 10.4%. On the other hands,
under the symmetric case p; = pa = —0.1 and ¢(3) error, D is less powerful than



156 DoNG WAN SHIN AND SEI JUNG PARK

S. The power value 21.8% of D is smaller than that 24.2% of S. Power advantage
of D over S tends to increase as p goes away from p; as in the case of d = 4. For
heteroscedastic errors, when p; = 0 and the distribution VM(1,10) for &;, as p2
varies from —0.01 to —0.90, power value of D increases considerably from 6.4%
to 92.2% and D performs better than S.
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