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SOME GENERALIZATIONS OF LOGISTIC
DISTRIBUTION AND THEIR PROPERTIES

THOMAS MATHEW! AND K. JAYAKUMAR?

ABSTRACT

The logistic distribution is generalized using the Marshall-Olkin scheme
and its generalization. Some properties are studied. First order autore-
gressive time series model with Marshall-Olkin semi-logistic distribution as
marginal is developed and studied.
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1. INTRODUCTION

Logistic distribution has attracted the attention of many researchers due to
the application of this distribution in various fields. Glasbey (1979) applied the
generalized logistic curve to the weight gain analysis of Ayshire steer calves,
which were recorded weekly from birth to slaughter at 880 ponds. Oliver (1982)
applied the logistic curve to human population. Wijesinha et al. (1983) applied
the polychotomous logistic regression model to large data set of patients where
there were many distinct diagnostic categories. Johnson (1985) applied logistic
regression to estimate the survival time of diagnosed leukemia patients. Morgan
(1985) proposed and applied the cubic logistic model to quantal assay data.

By various methods new parameters can be introduced to expand families of
distributions. Introduction of a scale parameter leads to accelerate life model
and taking powers of a survival function introduces a parameter that leads to
proportional hazards model. Marshall and Olkin (1997) introduced a new method
of adding a parameter to expand families of distribution. In particular, starting
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with survival function F they have derived the one-parameter family of survival
functions

ﬂ(w):{%}, —oo<zr<oo, 0<a<oo, a=1-a. (1.1)

We call H the Marshall-Olkin distribution generated from F. Marshall and
Olkin (1997) have applied this to exponential and Weibull case. The density and
hazard rate of H in terms of F are given by the expression h(z) = af(z)/(1 -
aF(z))?, r(z) = f(z)/{F(z) (1 — aF(z))} respectively. They established that
this family of distributions is geometric extreme stable.

A generalization to the method suggested by Marshall and Olkin (1997) is
starting with a survival function F and density function f, the two-parameter
family of survival function is

Glz) = {

F v
a_—(zs) , —o<r<oo, 0<a<oo, 0<y<oo. (12)
1 - aF(x)

When a = 1, we get G(z) = [F(a:)]'y and in particular when a = vy = 1, we
get G(r) = F(x).

aF(z 71 af(x
g(w)=7{ _(—) } fc(_) 5,
1—akF(z) {1-aF(z)}
where G and g are the survival function and the density function of new family
of distribution. The hazard rate function is

0@ af@
G(z) F(z){l-aF(z)}

The study on minification processes began with the work of Tavares (1980).
In his work, the observations are generated by the equation

r(z) =

Xn =k min(X,_1,e,), n>1, (1.3)

where k > 1 is a constant and {e,} is an innovation sequence of i.i.d. random
variables chosen to ensure that {X,,} is a stationary Markov process with a given
marginal distribution. Because of the structure of (1.3), the process {X,} is
called minification process.

Sim (1986) developed a first order autoregressive Weibull process and stud-
ied its properties. Giving slight modifications to (1.3), several other minification
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models have been constructed so far. Pillai (1991) studied semi-Pareto minifi-

cation process. Pillai et al. (1995) introduced a minification process having the
form

Eny w.p. P
Kn = { k min(X,_;,e,), wp. 1-—p’ O<p<l

Lewis and McKenzie (1991) obtained necessary and sufficient conditions on
the hazard rate of the marginal distribution for a minification process to exist.

In Section 2, Marshall-Olkin semi-logistic distribution is introduced and its
properties are studied. As a special case, Marshall-Olkin logistic distribution is
studied in detail and estimation of parameters is done. Generalized Marshall-
Olkin semi-logistic and logistic distributions are studied in Section3. In Section
4, first order autoregressive minification process with Marshall-Olkin semi-logistic
distribution as marginal is introduced and its properties are studied. Some ap-
plications are discussed in Section 5.

2. MARSHALL-OLKIN SEMI-LoOGISTIC DISTRIBUTION

We say that a random variable X defined on R = (—o0, 00) has semi-logistic

distribution (Jayakumar and Mathew, 2004) and write X 4 L¢(3, p) if its survival
function is

_ 1
Px(@) = ———, 2.1
x () T+ () (2.1)
where 7(x) satisfies the functional equation
1 1
n(z) = 2—777 (B In(p) +:c) , B>0, 0<p<Ll (2.2)

It can be shown that n(z) = e’®h(z), where h(z) is periodic in z with period
In(p)/B. For proof see Kagan et al. (1973). For example, if h(z) = e?°(52) it
satisfies (2.2) with p = e™2" and 7(x) is monotone increasing with 0 < 6 < 1.

Substituting (2.1) in (1.1), we get the Marshall-Olkin semi-logistic (M OSL(c,
3)) distribution whose survival function is given by '

- a

G(%) = m, &, ﬂ > 0,
where n(x) is as defined in (2.2). That is,

- 1

G(x) o, B>0.

T L)
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FIGURE 2.1 Density of Marshall-Olkin semi-logistic distribution.

The probability density function is

/
x):L(x) —w<zr<oo, a>0.

(e +n(z))*’

Taking h(z) = e?°%(62) the density plots of Marshall-Olkin semi-logistic
distribution for # = 0.4 and # = 1 is presented in Figure 2.1. The solid line
corresponds to a = 1, dotted line for o = 0.2 and dashed line for &« = 5. The
graph is symmetric when @ = 1 and § = 0 and exhibit periodic nature for all
other values of the parameters. From the Figure 2.1 it can be observed that for
fixed @ as € increases periodicity become more dominant.

The hazard rate is ,

n'(x)

r(z) = m.



SOME GENERALIZATIONS OF LOGISTIC DISTRIBUTION 115

04 =

B=0f F=02 8-02 p=02

FIGURE 2.2 Hazard rate of Marshall-Olkin semi-logistic distribution for « = 0.2, 1 and 5.

When h(z) = €?<°5(8) | the hazard rate function of the Marshall-Olkin semi-
logistic distribution is
élgeﬂaﬁ-ﬂ cos(8x) (1 -9 sin(ﬁac))
(1 4 éeﬂz—iﬁ cos(ﬁz))

r(z) =

The solid line corresponds to a = 1, dotted line for & = 0.2 and dashed
line for &« = 5. The hazard rate of Marshall-Olkin semi-logistic distribution is
periodic in nature. This characteristic of the hazard rate function is useful in
many situations. In the case of automobiles the failure rate is increasing and
as older parts are replaced by new ones, failure rate decreases and so on. The
periodic nature of the hazard rate may be useful in modeling such a situation.

From the Figure 2.2 it can be observed that for fixed 8 as # increases period-
icity become more dominant.

DEFINITION 2.1. Let X3, X2, ..., X, be a sequence of independent and iden-
tically distributed (i.i.d.) random variables with distribution function F. Suppose
N is independent of X;’s with geometric(p) distribution. That is,

P(N:’I’L)Zp(l_p)n_ﬁla n=1727"'7 O<p<1’ q:l—p
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and let Uy = min(X3, Xo,...,Xn) and Vy = maX(Xl,Xz,...,XN). IfF e
implies that distribution of Un (Vv ) is in S, then S is said to be geometric mini-
mum stable (geometric mazimum stable). If  is both geometric minimum stable
and geometric maximum stable, then < is said to be geometric extreme stable.

THEOREM 2.1. The Marshall-Olkin family of semi-logistic distribution is ge-
ometric extreme stable.

PROOF. We have,

P(Un > z) = P (min(X1, Xy, ..., Xn) > z)

> P (min (X1, X3, ..., Xn) > 2N =n) P(N = n)

n=1

=Y (F@)"P(N=n)
n=1

=Y (Fz)"q¢"!
n=1

_ _PF(z)
1 —gqF(x)

Also,
P(Vy < z) = P (max(X3, X2,..., Xn) < )
_ _p(x)
1+pn(z)’

O

THEOREM 2.2. Let X1, Xs,... be a sequence of i.i.d. random variables with
common survival function F(x) and N is geometric random variable with param-
eter p, which is independent of X; for alli>1 . Let Uy = min(X1, Xs, ..., Xn).
Then Uy is distributed as Marshall-Olkin semi-logistic if and only if {X;} is
distributed as semi-logistic.

PrOOF. Let

H(z) =P({Un>zx)

=Y (F(z))"pg""

n=1
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__ PF(z)_
1—(1-p)F(z)
Suppose
_ 1
F = —
() 1+ n(x)
Then 1
Az) = —
(=) 1+ %n(:c)
which is the survival function of Marshall-Olkin semi-logistic distribution. This
proves the sufficiency part of the theorem. Converse easily follows. O

DEFINITION 2.2. We say that a random variable X on (—o0,00) is said to
follow semi-extreme value distribution if its survival function is

F(z) = e @),

where 1(z) satisfies the functional equation (2.2).

The following theorem establishes the relationship between the semi-extreme
value distribution and Marshall-Olkin semi-logistic distribution.

THEOREM 2.3. If X1, Xo,..., X, are i.i.d. MOSL(«, 3)then
1 1 1
Zn:min(xl—-éln(%),XQ—Bln(%),...,Xn—Bln(%)), a, B>0,n>1, n>a

is asymptotically distributed as semi-extreme value.

PrOOF. If X is distributed as Marshall-Olkin semi-logistic (M OSL(«, 8,p))
then

Glz) = ————, o, B3>0,0<p<]1,
x

where n(z) satisfies (2.2).
Fr, ) = P (min (- 110 (2) = 10 (2) o X - 50 (8)) > )
_ {eX (:H Ly, (g))}”

(1
14+ 7@

3
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Taking limit when n — oo, we get

Fy, (z) = e,
This establishes the theorem. (|

As a special case of Marshall-Olkin semi-logistic distribution, we now study
some properties of Marshall-Olkin logistic distribution. Consider the logistic
distribution with survival function

F(zx) = —o<zr<oo, B>0.

1
1+ P’
Substituting this in (1.1) we get Marshall-Olkin logistic distribution. The survival
function of Marshall-Olkin logistic distribution is

= o
G(z) = — % _
@ =2,
1
= T T —o<r<oo, a>0, >0
2e
«
The density function is,
Bz
afle
g(:v):(—af—ﬂm)i, —w<zr<oo, a>0, #>0.
e

Moment generating function corresponding to Marshall-Olkin logistic distribution
is

Mx(t) = E (¢¥X) = oT (1 - %) T (1 + %)

and the cumulant generating function is

Kx(t) = %ln(a) +In (r (1 - %)) +1n (r (1+ %)) .

From this, we get

E(X) = lnl(Ba).
It can be easily seen that
Mode(X) = lnéa) ,
and
Median(X) = ln(a).

B
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That is, mean = median = mode = In(a)/8.
The distribution is symmetric about In(a)/8. All odd order moments are zero

and even order moments are given by

3 0o ~ ln(a) ) 2r Igéeﬂz
Y2r = / <x 3 (1 n ‘—i—eﬂm) dr.

— 0

When y = z — In(a) /8,

00 By
2r ,36
= = _d
/”’27‘ /_ooy (1—{—653/) y
_20(2r +1) i (—1)71
- 2r ;2
B i

2I(2 1
_—L/‘;T—‘r—) (1 — %) C(z’f‘), for r = 1,2’ veny

where ((s) = 3_22, 7 is Riemann zeta function.
In particular, we have V(X) = 72/(368%), ps = 77*/(156%), B = 0 and S
21/5 = 4.2.

In Figure 2.3 the density plots of Marshall-Olkin logistic distribution o = 0.1
(dotted line), a = 1 (solid line) and o = 12 (dashed line) is presented with 8 =

land 6 =2.

1
o
w
e

FIGURE 2.3 density of Marshall-Olkin logistic distribution.

Figure 2.3 describes how the scale parameter 5 and the location parameter
a affects the distribution. The hazard rate function of Marshall-Olkin logistic

distribution is
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The parameters of Marshall-Olkin logistic distribution can be estimated as in
Johnson et al. (1995). The moment estimates of a and 3 are obtained by solving

_ In(e) 5 T2
z= _ﬁ and S° = 35
The maximum likelihood estimates of o and 3 are obtained by solving the
equations
n
a=—
25" (o + i)
=1
and

1—1 =
To find an estimate for « first fix the value of 8. Then by Newton-Ralphson
method, find the value of a. This gives the estimate for a. Then again apply
Newton-Ralphson method to find the value of (.
The method of quantiles estimation in this case is as follows. Select two
numbers between 0 and 1 and obtain estimators of respective quintiles Xpl and
X ;- Estimates of 8 and o are obtained by solving the two simultaneous equations

szl—;, ji=12.
1+§eﬁXPJ‘
The estimate of 3 is
A 1 P(l1-P
b= i ln( 1 ( 2)>'
Xpl—sz P2(1“P1)

Corresponding estimators of a can be obtained from the other equation.

3. GENERALIZED MARSHALL-OLKIN SEMI-LOGISTIC DISTRIBUTION

Substituting (2.1) in (1.2) we get a generalization to Marshall-Olkin semi-
logistic distribution (GMOSL(a, 3,v)) whose survival function is given by

Glz) = (

where 7(z) defined in (2.2). That is,

_ 1 7
G(z) = (m) , o, B, v>0.

@

v
T N ) ’ ’ >Oa
)
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FIGURE 3.1 Density of the GMOSL(e, 8,7) distribution.

The probability density function of GMOSL(«, 3,) is given by
v+1
Y o ’
== ——- , v > 0.
9(z) =~ <a+n(x)) n(x), o B,

The hazard rate function is

r(z) = g (ﬁ) 7(@), o B, v>0.

Here we study the special case when h(z) = e?<(0%) 0 <9 < 1.

_ « R
6w) = (o) « @ B0

In Figure 3.1 the density plots of generalized Marshall-Olkin semi-logistic
distribution v = 0.2 (dotted line), v = 1 (solid line) and v = 5 (dashed line) is
presented. From Figure 3.1 it can be observed how the periodicity parameter 6,
skewness parameter v and the location parameter o affects the distribution.

( )_ 7_@ a T Bx4-6 cos(Bx) 1 _ fsi (6 )) a, B >0
I =" \at parbcos(en) | © (1= Osin(Ba)), & f,7>0.
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The hazard rate is

'7/3 o +0 cos(Bz :
Ir(x) - Z (a +eﬁ:l:+ecos(ﬂ$)) 6’3 +ocos(p )(1 - GSIH('BZ))’ & ’ﬂ Y > 0.

For 6 = 0, the Generalized Marshall-Olkin semi-logistic distribution reduces to
Generalized Marshall-Olkin logistic (GMOL(«, ,7)) distribution whose survival
function is

~ a v
G(z) = <—eﬁm) , a, B, v>0,
where 7(z) defined in (2.2).

That is,
R(z) = [ —2 B B, v>0
- 1 + éeﬁz ] I ? ’7 *

The probability density function of GMOL(a, 3,7) is given by

+1
9($)=ﬁ( “ )7 e a, B, v>0.

a \a+ e
The hazard rate function is

r(x):ﬁ( « )ﬁ o B, y> 0.

a \a+ef~
In Figure 3.2 the density plots of GMOL(c, 8,7) distribution for v = 0.2
(dotted line), v = 1 (solid line) and v = 5 (dashed line) is presented.
It is interesting to observe how the skewness parameter «y affects the proba-
bility distribution.
The moment generating function and the expectation are given by
'ya%I‘ (fy — ﬁ) r (1 + ﬂ)
Mx (t) = and
L(1+9)

23l () 4

This expression is convergent and numerical evaluation is possible

Median(X) = &) Bl (2%—1),

g
Mode(X) = ,(3%) .
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FIGURE 3.2 Density of the GMOL(a, 3,7) distribution.

4. FIRST ORDER AUTOREGRESSIVE MARSHALL-OLKIN SEMI-LOGISTIC
PROCESS

Since the logistic distribution has many applications in real life situations, au-
toregressive processes with logistic marginal are relevant. Sim (1993) introduced
and studied first order additive autoregressive model with logistic marginal dis-
tribution. Here we develop Marshall-Olkin semi-logistic process as a minification
analogue of the TEAR(1) structure in Lawrance and Lewis (1981).

THEOREM 4.1. Consider the first order autoregressive process { X} defined
by

Ens w.p. o
X, = : 4.1
" { min(Xp_1,&,), wp. l—« (41)

where {e,} is a sequence of independent and identically distributed random vari-
ables independent of X,,. Then {X,} is stationary first order autoregressive pro-

cess with Marshall-Olkin semi-logistic marginal if and only if {e,} is distributed
as semi-logistic.
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PRrROOF. Equation (4.1) in terms of survival functions is
FXn (m) = aF‘En (x) + (1 - a)FXn—l (w)an (a")' (4'2)

When the process is stationary, we get

3 _ aFEn(IE)
Fx(z) = 1-(1-a)F. (z)
Let
~ 1
E.0) = oy
Then = !
@ = ooy

which is the survival function of Marshall-Olkin semi-logistic distribution.
For n = 1, (4.2) becomes

Fx,(z) = aF;, (z) + (1 — @) Fx,(z)Fz, (2). (4.3)

If we take Fx,(z) as Marshall-Olkin semi-logistic and Fr, (z) as semi-logistic
in (4.3), we get
— 1
Fx,(z) = ———.
=17 an(x)
Assuming that X,_; is Marshall-Olkin semi-logistic and ¢, is semi-logistic, we
get

— 1
Fx (z) = ———.
Hence {X,} is stationary. This completes the proof. O

REMARK 4.1. Even if Xy is arbitrary, it can be proved that {X,} is asymp-
totically stationary Marshall-Olkin semi-logistic process.

Now we look in to some properties of the stationary Marshall-Olkin semi-
logistic process.
P(Xnt1 > Xn) = oP(ent1 > Xp) + (1 — a)P(min(Xp, eny1) > Xn)

= aP(en > X,)
bt
5"
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It can be proved that,
Corr(Xp, Xnt1) =1—a.
The joint survival function of (X,,, Xp4+1) is

Fx, %, (2,y) = P(Xp > 7, Xn41 > )
= (aFx,(z) + (1 — a)Fx, (max(z,y))) Fz, (¥)

_ a_l___ + (1 — a) 1 =
AT+ Ln(z) 1+ 2 max (n(z),n(y)) | 1+n(z)

When h(z) = €?°(82)  the joint survival function of (Xy, Xny1) for the
Marshall-Olkin semi-logistic distribution for 8 = 0.6, « = 0.6 and § = 0.9 is
presented in Figure 4.1. The periodicity of the distribution can be observed in
the figure.

FEEE

FIGURE 4.1 Joint survival function of (Xn, Xn+1) for the Marshall-Olkin semi-logistic process.

Sample path behavior of the Marshall-Olkin semi-logistic process for various
values of «, § and 6 are given Figure 4.2.

Since Marshall-Olkin logistic distribution is a special case of the Marshall-
Olkin semi-logistic distribution, all properties of Marshall-Olkin semi-logistic pro-
cess is also satisfied by Marshall-Olkin logistic process.
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FIGURE 4.2 Sample path behavior of the first order autoregressive semi-logistic process.

5. APPLICATIONS

Logistic distribution has applications in agricultural field, medical diagnosis,
public health etc. Most of the time series data that we come across in practice
are seasonal and periodic in nature. A one-parameter logistic model may not
be sufficient enough to model these characteristics. In these situations the two
parameter Marshall-Olkin logistic model may be useful. In the case of data
exhibiting periodic nature, the Marshall-Olkin semi-logistic distribution may be
an appropriate model. Note that if a given time series has periodic nature with
the governing process has stationary marginals as MOSL, then it accommodates
the seasonality inherent in the series.
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