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R: AN OVERVIEW AND SOME CURRENT DIRECTIONS'

LUKE TIERNEY!

ABSTRACT

R is an open source language for statistical computing and graphics based
on the ACM software award-winning S language. R is widely used for data
analysis and has become a major vehicle for making available new statistical
methodology. This paper presents an overview of the design philosophy and
the development model for R, reviews the basic capabilities of the system,

and outlines some current projects that will influence future developments
of R.
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1. INTRODUCTION

R is a language for statistical computing and graphics. R, along with S-plus,
is a member of the S language family originally developed by John Chambers and
colleagues at Bell Laboratories (Becker and Chambers, 1984; Becker et al., 1988;
Chambers, 1998). In 1998 the Association for Computing Machinery presented
its prestigious Software System Award to John Chambers for his development of
the S system. In recent years the S language family, and R in particular, have
become the de facto standard for computing in statistical research. Many books
describing R and S are now available; two examples are Dalgaard (2004) and
Venables and Ripley (2002).

R can viewed as a different implementation or as a dialect of S the language.
While there are some important differences between R and S-plus, some of which
are discussed in Section 6.1, much code written for S-plus runs unaltered under
R. In recent years R has become a major vehicle for making available new sta-
tistical methodology. Articles proposing new methods that also make available
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software implementing these methods do so using R more than any other software
framework.

R is an Open Source project. R was originally developed by Robert Gentleman
and Ross Thaka in the early 1990’s for a Macintosh computer lab at the University
of Auckland in New Zealand (Ihaka and Gentleman, 1996). In 1995 Ross and
Robert decided to release R as open source software and to invite other researchers
to join in R’s development. In 1997 a core group of around 10 developers was
formed, and John Chambers joined this group in 2000. The current members of
the R Core team are listed in Table 1.1.

TABLE 1.1 Current R Core members

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Kurt Hornik Stefano lacus

Ross Thaka Friedrich Leisch Thomas Lumley
Martin Maechler Duncan Murdoch  Paul Murrell

Martyn Plummer Brian Ripley Duncan Temple Lang
Luke Tierney Simon Urbanek

The basic design of R is motivated by the philosophy that good statistical
analysis involves exploring the data, allowing the data to guide the choice of
analysis tools, and adapting tools as needed for the appropriate analysis rather
than adapting the analysis to easily available tools. R is an interactive system,
in contrast to batch-oriented systems (e.g. SAS). R is a high level programming
language, in contrast to pure GUI systems (e.g. JMP). This allows analyses to
be documented and repeated; it also allows new methods to be programmed.

Writing simple R functions is a natural part of working in R. Collections of
functions that implement a particular analysis are often best organized into a
package. The R package system provides a framework for developing, document-
ing, and testing extension code. Packages can include R code as well as foreign
code (C, FORTRAN). Many R packages are made available through the Com-
prehensive R Archive Network (CRAN) repository. A recent count gave about
840 separate packages available through CRAN. Other repositories include the
Bioconductor repository.

2. Basic USAGE

R uses a command line interface, a read-evaluate-print loop: the user types
an expression, R reads the expression, evaluates it, and prints the result. Some
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simple examples:

> 2+ 3
(1] 5
> exp(-2)

[1] 0.1353353
> 1og (100, base = 10)

1] 2

‘A variable x containing a random sample of four numbers drawn from a
standard uniform distribution is created by

> x <= runif(4)
> X

[1] 0.1137034 0.6222994 0.6092747 0.6233794

Arithmetic operations in R are vectorized. Some vectorized operations:

>x + 1

[1] 1.113703 1.622299 1.609275 1.623379

> log(x)

[1] -2.1741619 -0.4743339 -0.4954860 -0.4725999

A range of numerical summaries are available, including mean and standard
deviation,

> mean(x)
[1] 0.4921642
> sd(x)

[1] 0.2523886
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median and inter-quartile range,

> median(x)
[1] 0.6157871
> IQR(x)

[1] 0.1371875

and sorting and ranking:

> sort(x)
[1] 0.1137034 0.6092747 0.6222994 0.6233794
> rank(x)

[11 1324

3. GRAPHICS

Graphics are an important component of modern data analysis. R encourages
the use of graphics by making it easy to construct simple graphs and by providing
a rich collection of different graphics types. Higher level graphics provided by R
are built on a low level abstraction layer that is common across all graphics
devices, and many contributed packages have used this foundation to further
enrich the selection of possible graphical displays. A recent book by Paul Murrell
(2005) provides a detailed introduction to graphics in R.

3.1. Simple graphics

Simple graphics include histograms and scatter plots. As an example, the data
set geyser in package MASS is a data frame containing two variables representing
measurements on successive eruptions of the Old Faithful geyser. The variables
are the waiting time between eruptions, waiting, and the duration of the sub-
sequent eruption, duration. A histogram of the durations with a superimposed
kernel density estimate is constructed by

> library(MASS)
> hist(geyser$duration, prob = TRUE)
> lines(density(geyser$duration), col = "red")
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Histogram of geyser$duration
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FIGURE 3.1 Histogram and density estimate for the eruption durations of Old Faithful.

The result is shown in Figure 3.1. The distribution has a clear bimodal structure.

The waiting times also have a bimodal distribution. An interesting question
for park management is whether the duration of the most recent eruption can be
used to predict the waiting time until the next eruption. We can compute and
plot the previous duration against waiting times with

> geyser2 <- geyser[-1, ]
> geyser2$pduration <- geyser$duration[-299]
> plot(waiting ~ pduration, data = geyser2)

The negative indices delete the corresponding entries. The plot is shown in Figure
3.2.

8.2. More complex graphics

The display of relationships among three or more variables presents unique
challenges. One of the standard displays available in R is the pairwise scatter
plot or scatter plot matrix. Figure 3.3 shows such a plot for Edgar Anderson’s
iris data consisting of four measurements on 50 flowers from each of three iris

species:
> pairs(iris[1:4], main = "Edgar Anderson's Iris Data", pch = 21,
+ bg = c("red", "green3", "blue")[unclass(iris$Species)])

Color is used to identify the different iris species.
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FIGURE 3.2 Scatter plot of waiting time against previous eruption duration for the Old Faithful
data.

Edgar Anderson's Iris Data
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FIGURE 3.3 Scatter plot matriz of Anderson’s iris data.
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FIGURE 3.4 Conditioning plot for locations of 1000 seismic events near Fiji.

Three dimensional data can be represented using a conditioning plot, a collec-
tion of related two dimensional plots each corresponding to a restricted range of
values for the third variable. Figure 3.4 shows a conditioning plot, or coplot, for
the Jocations of 1000 seismic events in an area near Fiji. Longitude and latitude
are plotted for different values of depth.

> coplot(lat ~ long | depth, data = quakes, pch = 21,
+ bg = "green3")

Each scatter plot panel corresponds to one of the depth ranges shown in the top
strip; the lower left panel corresponds to the shallowest depth level and the upper
right panel to the deepest. The coplot is an example of a trellis display; these
are discussed further in Section 3.3.

Displays that can be useful for visualizing functions of two variables include
perspective plots, image plots, and contour plots. Figure 3.5 shows a perspective
plot and an image plot overlayed with a contour plot of the surface of a volcano
in Auckland, New Zealand. The plots are constructed with

> z <- 2 * volcano
> x <- 10 * (1:nrow(z))
>y <- 10 * (1:ncol(z))
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FIGURE 3.5 Perspective, image and contour plots of the Maunga Whau volcano in Auckland,
New Zealand.

> persp(x, y, z, theta = 135, phi = 30, col = "green3",

+ scale = FALSE, 1ltheta = -120, shade = 0.75, border = NA,
+ box = FALSE)
and

> image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
> contour(x, y, volcano, levels = seq(90, 200, by = 5),

+ add = TRUE, col = "peru")

> axis(1, at = seq(100, 800, by = 100))
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> axis(2, at = seq(100, 600, by = 100))
> box()

> title(main = "Maunga Whau Volcano"”, font.main = 4)

The R Graph Gallery and demo (graphics) give more examples.

3.3. Lattice graphics

The lattice package by Deepayan Sarkar implements trellis displays (Becker
et al., 1996). Trellis displays are collections of related plots designed to visualize
the relations among several variables. The xyplot function implements trellis
scatter plots, which can consist of a single plot or a collection of plots conditioned
on values of additional variables.

Trellis displays are particularly useful in hierarchical modeling. An example is
provided by growth measurements recorded for a sample of 26 boys from Oxford,
England. The measurements consist of height in centimeters and a standardized
age value. The data are arranged in a data frame with a third column, Subject,
recording the identity of the individual measured at a particular occasion. Figure
3.6 shows a basic conditioning plot constructed by

> library(anlme)
> library(lattice)

> xyplot(height ~ age | Subject, data = Oxboys)
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FIGURE 3.6 Lattice plot of height against standardized age within subject for Oxford boys growth
data.

The plot shows near linear behavior within subject, but both slope and in-
tercept vary between subjects. The covariation of slope and intercept is hard to
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judge from from Figure 3.6. A simple change to the plotting command changes
the aspect ratio of the plots and adds regression lines within each plot:

> xyplot(height ~ age | Subject, data = Oxboys, aspect = "xy",
+ type = c("p", "r"), col.line = "black")
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FIGURE 3.7 Lattice plot with a different aspect ratio and superimposed regression lines.

The "xy" aspect specification requests a plot in which the slopes are closer to
+45 degrees since research has shown that this helps to compare slopes accurately
(Cleveland, 1993). The plot suggests that higher intercepts are associated with
higher slopes. This is illustrated further in Section 4.2.

4. STATISTICAL MODELS IN R

The standard R distribution supports fitting a wide range on statistical mod-
els to data. Many more are supported through contributed packages. Some of
the models that are supported in the standard distribution are linear, nonlinear,
and linear mixed effects models with Gaussian errors, generalized linear and gen-
eralized additive models, and survival models. Most modeling functions use a
model formula for specifying the model to be fit. Examples of model formulas
are

e Linear model: height ~ weight + age
e Nonlinear mean function: Weight ~ b0 + bl * 2 ~ (-Days/th)

e Survival model: Surv(time, status) ~ dose + diet
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Similar formulas are also used in specifying graphical displays, in particular for
lattice graphics.

4.1. Linear models

Linear models are fit using the function 1m. For the Old Faithful geyser data
introduced in Section 3.1 a linear model relating waiting time to the duration of
the previous eruption is fit using the expression

> geyser.fit <- lm(waiting ~ pduration, data = geyser2)

The function summary produces a standard summary of the fit:

> summary(geyser.fit)

Call:

Im(formula = waiting ~ pduration, data = geyser2)

Residuals:
Min 1Q Median 3Q Max
-14.6940 -4.4954 -0.0966 3.9544 29.9544

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 34.9452 1.1807 29.60 <2e-16 *xx
pduration 10.7751 0.3235 33.31 <2e-16 **¥x*

Signif. codes: O ***x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 6.392 on 296 degrees of freedom
Multiple R-Squared: 0.7894, Adjusted R-squared: 0.7887
F-statistic: 1110 on 1 and 296 DF, p-value: < 2.2e-16

The plot function has a method for 1m objects that can produce various diagnostic

plots; a plot of residuals against fitted values, shown in Figure 4.1, is produced
by

> plot(geyser.fit, which = 1)
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Residuals vs Fitted

610

10 20 30
| 1

Residuals

-10

50 60 70 80 20

Fitted values
Im(waiting ~ pduration)

FIGURE 4.1 Diagnostic plot of residuals against fitted values for predicting waiting time from
previous eruption duration for the Old Faithful data.

4.2. Linear mized models

Linear mixed effects models can be fit using the function 1me from package
nlme. A model with random slopes and intercepts can be fit to the Oxford boys
growth data of Section 3.3 using

> Ime(height ~ age, data = Oxboys, random = “age | Subject)

Linear mixed-effects model fit by REML
Data: Oxboys
Log-restricted-likelihood: -362.0455
Fixed: height ~ age

(Intercept) age
149.371753 6.525469

Random effects:
Formula: “age | Subject
Structure: General positive-definite, Log-Cholesky parametriza-
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tion

StdDev Corr
(Intercept) 8.081077 (Intr)
age 1.680717 0.641
Residual 0.659889

Number of Observations: 234
Number of Groups: 26

As suggested by the graphical analyses the fit estimates a strong positive corre-
lation between the slopes and the intercepts.

5. SIMULATION

Simulations are useful for exploring and understanding a wide range of prob-
lems and for approximating otherwise intractable integrals and probabilities. R
provides facilities for simulating from many univariate distributions and some
multivariate distributions, and for sampling with and without replacement from
a specified population. R includes a range of uniform generators and allows the
generator and its seed to be specified. This is useful for ensuring reproducible
results and for checking that a result is not unduly affected by the choice of a un-
derlying random number generator. It is also possible to install a user-provided
generator; this is useful in parallel computing contexts described in Section 8.1.

A simple example often used in the classroom is to use simulation to illus-
trate the central limit theorem. The following code generates 1000 samples of
32 exponential random variables and computes the sample mean for the first 4
and for all 32 observations in each sample. Histograms and density estimates are
then plotted and shown in Figure 5.1.

rmat <- matrix(rexp(1000 * 32), nrow = 32)

mns <- cbind(colMeans(rmat[1:4, 1), colMeans(rmat))
hist(mns[, 1], prob = TRUE, main = "Samples of Size 4")
lines(density(mns[, 1]), col = "red")

hist(mns[, 2], prob = TRUE, main = "Samples of Size 32")
lines(density(mns[, 2]), col = "red")

vV V VvV VvV Vv VvV

The plot for samples of size 32 is clearly closer to normal in shape than the plot
for samples of size 4.
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FIGURE 5.1 Histograms and density estimates for sample means for samples of size 4 and 32
from an exponential distribution.

R is often used for simulation-based inference, including simulation-based ex-
act tests, bootstrapping, and Bayesian inference via Markov chain Monte Carlo.
The boot package is the most used framework for bootstrapping. Several pack-
ages supporting generic MCMC are available, and a number of packages use
MCMC internally for specific computations. There are also several interfaces to
BUGS (Thomas et al., 2006) available. MCMC samplers for more complex mod-
els are often programmed directly in R. The coda and boa packages are useful
for the analysis of MCMC output.

6. SOME ASPECTS OF SOFTWARE DEVELOPMENT IN R

R has become a major framework for implementing new statistical methodol-
ogy. A number of features of R support the development of statistical software. R
is designed as a high level language, but also provides means of interfacing to code
written in low level languages such as C and FORTRAN. This is useful for allow-
ing existing code written in these languages to be interfaced to R and to allow
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code to be written in these languages to improve performance. R also provides
a very effective package mechanism for managing and distributing a collection
of code and related documentation. A major goal of the package mechanism is
to provide tools to help package authors test and consistently document their
code. The Sweave system (Leisch, 2002, 2003) provides an excellent means for
integrating the results of R computation into documentation and is used as the
basis for more extensive usage documents called vignettes that can be included
in packages.

R also provides a profiling mechanism to help identify execution hot spots
that can be studied more carefully to improve performance. Thomas Lumley is
currently working on extensions to the profiling mechanism to support profiling
of memory use.

Recently R has been used as a statistical engine embedded in other applica-
tions such as data bases or web servers. Support to make this easier to do and
work more robustly continues to be added to R.

R has a number of high level language features that contribute to its effec-
tiveness for developing statistical software. Lazy evaluation of arguments is a
feature of the S language family that is somewhat unusual but can be useful; in
particular it means that new control constructs can be introduced without the
need for a macro system. Lexical scope, which separates R from other members
of the S family, is a standard feature of high level functional and nearly functional
languages and can be very useful for succinctly expressing a number of computa-
tions; a brief example is given in Section 6.1. Name space management, discussed
in Section 6.2, is valuable for ensuring that separately developed packages can be
used together without interference. R also provides a sophisticated mechanism
for handling error conditions and support for object-oriented programming.

6.1. Lexical scope

Function bodies contain two kinds of variables: variables that are bound to
the function parameters and free variables. How free variables are interpreted
is determined by a language’s scoping rule. R uses lexical scope (Gentleman
and Thaka, 2000). This means that free variables in a function are resolved by
looking in the environment in which the function is defined. For a pair of nested
function definitions this means that free variables in the inner function are looked
up in the containing function definition and then in the global environment.
This is a major difference, perhaps the major difference, between R and S-plus.
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Lexical scope is a powerful idea that enables higher level functional programming.
It allows code such as optimization routines or generic MCMC samplers that
naturally take functions as arguments to be written more simply since they do
not need to provide mechanisms for passing additional arguments into functions—
any additional data needed can be captured using lexical scope.

As a simple example of the use of lexical scope, a function that creates
Bernoulli log likelihood functions can be defined as

> mkBernoullilogLik <- function(x) {

+ n <- length(x)

+ k <- sum(x)

+ function(p) k * log(p) + (n - k) * log(l - p)
+ }

This function computes the sufficient statistics, the number of trials n and the
number of successes k, and returns the log likelihood function, a function of one
argument p:

> mkBernoullilogLik(rbinom(20, 1, 0.3))

function (p)
k * log(p) + (n - k) * log(l - p)
<enviromment: 0x243ad98>

The result returned by mkBernoulliLogLik is a function closure consisting of
a function definition and the environment in which it is defined. The function
definition contains free variables n and k that are bound to the values in the
enclosing environment from the call to mkBernoulliLogLik that created the log
likelihood function closure. This function closure can now be used as a univariate
function for plotting or optimization.

6.2. Name spaces

Name spaces (Tierney, 2003) provide a mechanism to ensure that only ex-
plicitly exported functions and variables are globally visible. Private functions
and variables are seen by code defined in a package but not by code in other
packages. In addition to its own private functions and variables code in a pack-
age with a name space will only see functions and variables it explicitly imports.
This ensures that two packages developed independently will not interfere with



R: AN OVERVIEW AND SOME CURRENT DIRECTIONS 47

each other by inadvertently using the same variable or function name for differ-
ent purposes or by masking functionality needed from other packages. With the
very large number of packages now available for R name spaces have become an
essential mechanism to help ensure reliability.

Name spaces are implemented using the ideas of lexical scope. Functions in
a name space are defined in the scope of the name space, which is contained in a
scope consisting of the name space imports. For mostly historical reasons the base
name space is implemented differently from other name spaces and, in particular,
cannot have private variables and functions. This limitation will hopefully be
overcome in a future release.

6.3. Some open issues

There are a number of areas in which R can use further improvement and
development. One weakness is that there are currently too many systems sup-
porting object oriented programming (two: S3 (Chambers and Hastie, 1991) and
S4 (Chambers, 1998)), and too many basic graphics systems (again two: the
traditional, or standard, system used for most standard graphics and the grid
system used by lattice and several other packages). Development would be sim-
plified if these duplications could be eliminated, but as there is a large code base
using both, and as there remain some unresolved issues in the design of the S4
object system, this will take time.

Support for integrating R with an event loop of a GUI application is also less
that satisfactory. A core issue is that R’s graphics devices require a minimal event
loop and thus supporting an external event loop requires integration of at least
two event loops. This is a major challenge and requires further development.

At least partly related to the difficulties of event loop integration is the lack
of support in R for dynamic graphics. Some interesting efforts are available,
such as the Java-based iplots and integration with ggobi, but no support for
programmable dynamic graphics along the line of Lisp-Stat (Tierney, 1990) is
available at this point.

R’s approach of working with data in memory allows great flexibility in pro-
gramming but can limit the size of data sets that can be analyzed, especially
on 32-bit hardware. Some efforts to allow models to be fit to data not held in
memory are available, as is support for working on subsets of data stored in data
bases. Memory demands could be reduced somewhat by storing the workspace
on disk rather than in memory. Because of relationships created by lexical scope
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this is more challenging than in S-plus but may be feasible.

R’s documentation system helps to encourage providing high quality docu-
mentation but further improvements could be useful. More automation in the
process of creating documentation and more flexibility in organization by key-
words are two area under consideration.

The package mechanism provides a framework for automatically running ex-
amples from the documentation as well as additional tests provided by the pack-
age author. But run time tests cannot cover all possible execution paths. Ad-
ditional tools for analyzing code for possible errors would be a helpful addition
and are currently under development.

Performance is an important factor in the effectiveness of R for computa-
tionally intensive tasks. While performance of many facets of R is very good,
continued efforts are needed to identify and improve performance weaknesses.

7. RECENT DEVELOPMENTS

R is an evolving system with major releases occurring twice a year. Many of
the changes are incremental improvements and bug fixes, but others are larger and
more noticeable. The most recent release at the time of writing included major
enhancements to the S4 classes and methods system, performance enhancements
of some key functions such as rep, support for one package to make C code avail-
able for use by C code in other packages, and experimental support for memory
use profiling. Other recent releases have included enhancements to support for
embedded use of R, improved support for use of FORTRAN 90/95 in packages,
and lazy loading of packages to reduce memory use and improve start-up speed
(Ripley, 2005).

A major recent addition is support for internationalization and localization
that allows major aspects of the R interface to be presented in a language appro-
priate for the user. The infrastructure to support this was developed by Brian
Ripley (2005), with translations provided by a network of volunteers. Figure 7.1
shows R consoles on Fedora Core 5 in Korean and German locales.

8. WORK IN PROGRESS

New developments in R are typically initiated by one or two members of the
R core group. New ideas are accepted by consensus, which has so far not been
a limiting factor and has kept disagreements to a minimum. Once a new idea
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FIGURE 7.1 R consoles on Fedora Core 5 in Korean and German locales.

has been incorporated its maintenance becomes a group responsibility, though
the original developer usually takes the lead. Individual members of R core have
their own priorities on areas to develop. In this section I describe a few of my
own areas of current interest.

Code analysis is the process of analyzing R source code to detect possible
errors and possible areas for performance improvement. Code analysis can be
a precursor to compilation to some form of code that can be executed more
efficiently. Byte code is a natural and portable approach for a high level language
like R. Developing a byte code compiler in an ongoing project (Tierney, 2001).
A preliminary version is available from my web site, though it may need some
updating to work with recent releases of R. A separate set of code analysis tools
has evolved from the byte code compilation project. These are currently being
used in analyzing CRAN submissions and will soon be incorporated into the R
distribution.

Two other areas of current work that are described in more detail below are
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support for parallel computing in R and tools for visualizing functions of three
variables and volume data, in particular isosurfaces or three-dimensional contour
surfaces.

8.1. Parallel computing in R

With the power of modern processors many computations are essentially in-
stantaneous. There are however computations that can take several minutes,
hours, days, or months. Many statisticians have access to tens of workstations
that could in principle be harnessed to speed up these computations. In addition,
dual-core processors are becoming common, and workstations with dual dual-core
processors are no longer unusual.

There are two possible approaches to bringing parallel computation into R:
explicit parallelism in which the programmer needs to write explicitly parallel
code, and implicit parallelism in which R arranges internally to carry out some
computations in parallel. The snow package is one approach to supporting ex-
plicit parallelism. Implicit parallelism is currently available within linear algebra
computations if a suitable version of the BLAS is used. Recent changes have
made it easier to choose different BLAS versions at run time. Whether implicit
parallelism can be further integrated into R’s vectorized arithmetic system will
be explored in the near future as discussed briefly below.

The snow (Simple Network of Workstations) package (Rossini et al., 2007)
is designed to make it easy to write explicitly parallel code for “embarrassingly
parallel” problems. It is based on a message passing model in a distributed
memory environment, as one has with a collection of workstations or a Beowulf
cluster, and can use rpvm (Li and Rossini, 2001), Rmpi (Yu, 2002), or basic sockets
as its communication infrastructure. In the snow model a master R process starts
up a cluster of worker R processes or nodes, the task is divided up among the
workers, and the results are then collected by the master. Bootstrapping is ideally
suited to this scatter-compute-gather approach, but there is a need to be careful
about random number generation. Fortunately R’s random number generation
infrastructure allows the use of generators that are designed for use in parallel
computations. Several packages providing such generators are available for R; the
default used by snow is currently the package rlecuyer (L’Ecuyer et al., 2002).

A simple example of a bootstrap computation split among 10 R nodes would
look like this: "

> library(snow)
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> cl <- makeCluster(10)

> clusterSetupRNG(cl)

> clusterEvalQ(cl, library(boot))

> b <- clusterCall(cl, boot, nuke.data, nuke.fun, R = 100, m = 1,
+ fit.pred = new.fit, x.pred = new.data)

> stopCluster(cl)

The first three expressions load the snow package on the master, start a cluster
of 10 nodes, and set up the parallel random number generators. The fourth
expression loads the boot package on all the nodes, and the final expression shuts
the cluster down. The main work is done by the fifth expression using the function
clusterCall, which calls a function with identical arguments on all worker nodes
and returns a list of the results. Other functions available include clusterApply,
a parallel version of lapply, and clusterApplyLB, a load-balancing version of
clusterApply.

Many computations can be expressed as one or more sequences of scatter-
compute-gather operations, perhaps with an initial larger data distribution and
some intermediate data exchange. The BSP model for parallel computing is built
on this idea (Bisseling, 2004). Current work is exploring how such sessions of
related operations can be supported more effectively, while retaining the current
simplicity that was a key design goal for the snow package. Other areas of current
work include exploring how to handle R level errors and user interrupts in snow
computations and how to handle node or network failures; these are likely to
become more important if snow is to be extended to run on a computational
grid (Foster and Kesselman, 2003). Some early results based on fault tolerance
support in PVM are promising.

Because of the data transfer overheads involved the message passing approach
used in snow is most suitable to coarse-grained parallel tasks. Shared memory
approaches that use multiple threads within a single process may be more suit-
able to finer grained parallelism needed in automatic parallelization. Several
BLAS implementations can use multiple threads, usually only for level 3 BLAS
operations. I am currently investigating whether similar ideas can be incorpo-
rated into R’s internal vectorized arithmetic system. The basic idea is that if x
and y are vectors and f is a vectorized primitive operation, then one can use
several threads, one for each processor, to compute f(x,y) in parallel. A key
problem is that for short vectors synchronization overhead can make this slower
than sequential computation. One solution is to carefully tune the mechanism
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so that parallel evaluation is only attempted when the vectors are long enough
to overcome this overhead. Another interesting approach is so use compilation
to fuse several operations so that the threads can carry out a sequence of opera-
tions independently and only need to synchronize at the end of the larger fused
operation. An important consideration in developing a design for such a parallel
vectorized arithmetic system is to also develop an interface to allow packages to
contribute their own operations to the pool of operations that can take advantage
of this approach. It is hoped that a prototype of this system will be available by
September 2007.

8.2. Isosurfaces in R

Another area of current work is the development of tools for visualizing func-
tions of three variables or volume data, such as medical imaging data, collected
on a three dimensional grid. Isosurfaces or three dimensional contours are a use-
ful tool. As part of this Ph.D. research Dai Feng has implemented a version of
the marching cubes algorithm in R. The result is a collection of triangles approx-
imating a contour surface. These triangles can then be rendered using the rgl
package, which provides an interactive 3D image, or using standard graphics.
Rendering in standard graphics requires that colors be adjusted using a lighting
algorithm. The package misc3d contains the current implementation.

A challenging issue is how to represent nested sets of contours. One option
is to make outer contours transparent. This is possible with the rgl rendering
engine and is illustrated in the right hand plot in Figure 8.1. For standard
graphics devices that do not support transparency an alternative is to cut away
some of the plot as shown on the left in Figure 8.1. Some R graphics devices now
support transparency, but there are some issues with the handling of boundaries
of polygons that need to be resolved for this to be effective for transparent contour
rendering.

9. CONCLUSIONS

Many resources are available for those interested in learning more about R.
There are now several book devoted to R and S, including Dalgaard (2004) and
Venables and Ripley (2002). Several good introductions are available on the web,
many linked from the R home page. The R graph gallery provides a window
into the range of graphics available in R and its contributed packages. Help is
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FIGURE 8.1 Nested contours of a mizture of tri-variate normal densities. The figure on the left
1s rendered using standard graphics; the figure on the right is rendered with rgl.

available through an active mailing list community; mailing lists are archived and
are accessible from within R using the RSiteSearch command. A recent addition
is the R Wiki.

R has been very successful on a number of dimensions: it provides a valuable
tool for data analysis; it provides a framework for disseminating new method-
ology and enabling the development of other large projects (e.g. Bioconductor
(Gentleman et al., 2004)), and it serves as a framework for statistical computing
research. R also illustrates the value of the open source development model for
statistical software.

R’s success has not come without costs. Changes now affect a large number of
users; this can limit innovation. The desire to support new, less experienced users
can be in conflict with the need to support advanced use as well. Nevertheless,
R can be expected to evolve and improve for a number of years to come.
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