DOI QR코드

DOI QR Code

라지 팻치에 감염된 잔디에서 프롤린과 암모니아의 축적

Proline and Ammonia Accumulation in the Zoysiagrass Infected with Large Patch

  • 발행 : 2007.03.30

초록

병원균 감염에 의한 식물체내 프롤린과 암모니아의 농도 변화와 그것의 스트레스 생리학적 의미를 구명하기 위하여 Rhizoctonia spp.를 처리 후 라지 펫치에 감염된 잔디의 생육 및 관련 화학적 성분을 감염이 되지 않은 대조구와 비교하였다. 라지 펫치에 감염된 잔디의 뿌리의 건사율은 대조구에 비해 약 30% 증가하였다. 가용성 단백질 농도는 병원균 처리후 6일째 잎의 경우를 제외하고는 라지 펫치 감염에 따른 유의적인 영향이 없었다. 암모니아 농도 역시 라지 펫치에 감염된 잎과 줄기에서 공히 유의적으로 증가하였다. 프롤린 농도는 잎과 뿌리에서 대조구에 비해 각각 3.4 및 4.5배 증가하였다. 이러한 결과들은 잔디에 있어 병원균 감염에 따른 프롤린의 축적은 스트레스 강도를 나타내는 민감한 표지물질로서 의미가 있음을 제시한다.

To investigate the response of proline and ammonia to pathogen infection, plant growth and relevant chemical component were examined in large patch-infected or healthy (control) zoysiagrass during 6 days after treatment. Pathogen-infection increased root mortality by 30% compared to control. Soluble protein was not significantly affected by pathogen-infection except in the leaf at day 6. Ammonia concentration also increased significantly in both leaves and roots of pathogen-infected plants. Proline concentration in leaves and roots increased to 3.4- and 4.5-fold, respectively, compared to those of control at day 6. These results suggest that proline accumulation may be a sensitive biochemical indicator representing the stress intensity caused by pathogen infection in zoysiagrass.

키워드

참고문헌

  1. Aslam, M., R. Huffaker and D. Rains. 1984. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol. 76:321-325 https://doi.org/10.1104/pp.76.2.321
  2. Aspinall, D. and L.G. Paleg. 1981. Proline accumulation : Physiological aspects. In : The Physiology and Biochemistry of Drought Resistance in Plants (Eds Paleg, L.G. and D. Aspinall). Academic Press, Sidney. pp. 205-241
  3. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207 https://doi.org/10.1007/BF00018060
  4. Bradford, M.M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Burppee, L.L. 1980. Rhizoctonia cerealis causes yellow patch of turfgrasses. Plant Dis. 64: 1114-1116 https://doi.org/10.1094/PD-64-1114
  6. Delauney, A.J. and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  7. Gilbert, G.A., V.G. Michelle, C. Wilson and M.A. Madore. 1998. Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J. Exp. Bot. 49:107-114 https://doi.org/10.1093/jexbot/49.318.107
  8. Girousse, C., R. Bournoville and J.L. Bonnemain. 1996. Water deficit-induced changes in concentration in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol. 111: 109-113 https://doi.org/10.1104/pp.111.1.109
  9. Gzik, A. 1996. Accumulation of proline and pattern of ${\alpha}-amino$ acids in sugar beat plants in response to osmotic, water and salt stress. Environ. Exp. Bot. 36:29-38 https://doi.org/10.1016/0098-8472(95)00046-1
  10. Hare, P.D., W.A. Cress and V. Staden. 1998. Dissecting the role of osmolyte accumulation during stress. Plant Cell Environ. 21:535-553 https://doi.org/10.1046/j.1365-3040.1998.00309.x
  11. Huang, I.S., L.F. Liu and C.H. Kao. 1994. Putrescine accumulation is associated with growth inhibition in suspension-cultured rice cells under potassium deficiency. Plant Cell Physiol. 35:313-316
  12. Kim, T.H., B.R Lee, W.J. Jung, K.Y. Kim, J.C. Avice and A. Ourry. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct. Plant Biol. 31:847-855 https://doi.org/10.1071/FP04059
  13. Kim, T.H. and B.H. Kim. 1996. Ammonia microdiffusion and colorimetric method for determining nitrogen in plant tissues. J. Kor. Soc. Grassl. Sci. 16:253-259
  14. Knievel, D.P. 1973. Procedure for estimating ratio of living to dead root dry matter in root core sample. Crop Sci. 13:124-126 https://doi.org/10.2135/cropsci1973.0011183X001300010043x
  15. Kramer, P.J. 1983. Water stress research: progress and problems. Curr. Top. Plant Biochem. Physiol. 2:129-144
  16. Lee, B.R., W.J. Jung, K.Y. Kim, J.C. Avice, A. Ourry and T.H Kim. 2005. Transient increase of de novo amino acid synthesis and its physiological significance in water-stressed white clover. Funct. Plant Biol. 32:831-838 https://doi.org/10.1071/FP05022
  17. Lovatt, C.J. 1990. Stress alters ammonia and arginine metabolism. In: Polyamines and ethylene: Biochemistry, physiology and interactions (Ed Flores, H.E.). American Society of Plant Physiology, Rockville. pp. 166-179
  18. Martin, S.B. and L.T. Lucas. 1984. Characterization and pathogenicity of Rhizoctonia spp. and binucleate Rhizoctonia-like fungi from turfgrasses in North Carolina. Phytopathol. 74:170-175 https://doi.org/10.1094/Phyto-74-170
  19. Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas and P. Aparcio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346-352
  20. Oniki, M., K. Kobayashi, T. Araki and A. Ogoshi. 1986. A new disease of turfgrass caused by binucleate Rhizoctonia AG-Q. Ann. Phytopathol. Soc. Japan. 52:850-853 https://doi.org/10.3186/jjphytopath.52.850
  21. Rabe, E. 1990. Stress physiology-the functional significance of the accumulation of nitrogencontaining compounds. J. Horti. Sci. 65:231-243
  22. Rabe, E. 1999. Altered nitrogen metabolism under environmental stress conditions. In: Handbook of plant and crop stress (Ed Pessarakli, M.). Marcel Dekker, New York. pp. 349-363
  23. Rabe, E. and C.J. Lovatt. 1984. De novo arginine biosynthesis in leaves of phosphorus-deficient Citrus and Poncirus species. Plant Physiol. 76: 747-752 https://doi.org/10.1104/pp.76.3.747
  24. Rabe, E. and C.J. Lovatt. 1986. Increased arginine biosynthesis during phosphorus deficiency. A response to the increased ammonia content of leaves. Plant Physiol. 81:774-779 https://doi.org/10.1104/pp.81.3.774
  25. Rao, R. and A. Gnanam. 1990. Inhibition of nitrate and nitrite reductase activities by salinity stress in Sorghum vulgare. Phytochem. 29:1047-1049 https://doi.org/10.1016/0031-9422(90)85400-A
  26. Rayapati, P.J. and C.R. Stewart. 1991. Solubilization of a proline dehydrogenase from maize (Zea mays) mitochondria. Plant Physiol. 95:787-791 https://doi.org/10.1104/pp.95.3.787
  27. Serraj, R., T.R. Sinclair and L.C. Purcell. 1999. Symbiotic N2 fixation response to drought. J. Exp. Bot. 50:143-155 https://doi.org/10.1093/jexbot/50.331.143
  28. Sivakumar, P., P. Sharmila and P. Pardha Saradhi. 1998. Proline suppresses rubisco activity in higher plants. Biochem. Biophysic. Commun. 252:428-432 https://doi.org/10.1006/bbrc.1998.9666
  29. Stewart, C.R. and S. Boggess. 1977. The effect of wilting on the conversion of arginine, ornithine and glutamate to proline in bean leaves. Plant Sci. Letter 8:147-153 https://doi.org/10.1016/0304-4211(77)90025-6
  30. Yancey, P.H., M.E. Clark, S.C. Hand, R.D. Bowlus and C.N. Somero. 1982. Living with water stress: evolution of osmolyte system. Science 217:1214-1222 https://doi.org/10.1126/science.7112124