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A ROBUST SCHEME FOR THE MULTICOMPONENT REACTIVE GAS FLOWS
IN THE PRESENCE OF SHOCK WAVES
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In this paper, the dispersion controlled dissipative (DCD) scheme is reviewed and then extended to
simulate chemically reacting gas flows in multicomponent mixtures in the presence of strong shock waves.
Furthermore, the properties of the reactive DCD (DCD-R) scheme are discussed, followed by several
applications. The DCD scheme has been shown to have the following features: high accuracy and robustness
for reacting gas flows in the presence of strong shock waves and contact discontinuities, and algorithmic

simplicity.
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1. INTRODUCTION

Chemically reacting gas flows are of interest across a
wide scope of research or engineering applications, such
as combustion, space shuttle reentry, propulsion, and
chemical laser problems. A great deal of numerical effort
has been made to illustrate the underlying physical and
chemical phenomenon in the relevant flows. However, the
simulation of chemically reacting flow presents distinct
difficulties associated with the inherently large ranges of
spatial and temporal scales involved, and the stiffness of
the goveming differential equations. It becomes even more
difficult to satisfy the corresponding  numerical
requirements in the presence of strong shock waves and
contact discontinuities. On the other hand, most of the
prevailing schemes for shock capturing, either flux
difference splitting (FDS) or flux vector splitting (FVS),
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were initially developed for inert flows. When a scheme is
extended to multicomponent reacting flows, the complex
formula manipulation becomes inevitable. Moreover, the
robustness of the consequential scheme may suffer from
the stiffness introduced by chemical reactions.

The dispersion controlled dissipative (DCD) scheme,
which was proposed by Jiang[1-3], is one of the shock
capturing schemes to deal with the stiffness problem. The
principle of the DCD scheme is to suppress nonphysical
oscillation by making use of the inherent dispersion
characteristics of the modified equation rather than by
adding artificial viscosity. In complex flowfields there may
be many shock waves or discontinuities with a large
scope of intensities. The artificial dissipation required must
vary in accordance with the oscillation amplitude that
depends on the discontinuity intensity so that optimum
effects could be achieved. Unfortunately, it is too difficult
to be realized; therefore, over or under-dissipation may be
introduced into numerical solutions. Moreover, the free
parameters for controlling artificial dissipation have no
physical meaning and may induce something artificial. The
DCD scheme has been demonstrated to be distinct from
conventional dissipation-based schemes in which special
attention was not given to the problem of the nonphysical
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oscillation that occurs in the vicinities of shock waves or
contact  discontinuities. This scheme has sufficient
dissipation to remove the carbuncle phenomenon, which is
a numerical instability when capturing a strong shock
wave in multidimensional computations. The DCD scheme
has the following features: accuracy and robustness for
shock and contact discontinuities, algorithmic simplicity,
and computational efficiency for multicomponent reacting
flows[4].

In this paper, the DCD scheme is first reviewed and
then the scheme formulation for multicomponent systems
is demonstrated, which is referred to as DCD-R scheme
for briefness in the following text. Furthermore, the
properties of the DCD-R scheme are discussed, followed
by several applications.

2. DISPERSION-CONTROLLED DISSIPATIVE SCHEMES
FOR THE MULTICOMPONENT REACTIVE FLOWS

2.1 REVIEW OF THE DCD SCHEME FOR SHOCK CAPTURING
In the sample wave equation

ou ou
a&t-’-CE-O, c>0, (1)

the partial differential equation (1) must be discretized on
the discretized numerical domain to obtain a finite
difference equation at grid point j:
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Here parameter L varies according to the numerical
scheme used for discretization. When all of the terms in
(2) are extended with the Taylor series at grid point j, a
new partial differential equation can be derived in the
form of
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Eq. (3) was referred to as the modified equation of the
finite difference equation by Warming and Hyett in
1974[5]. The numerical solution of the finite difference
equation (2) is essentially the solution of the modified
equation (3) rather than (1). From the viewpoint of the
modified equation, the nonphysical oscillations and the
smeared shock waves are not induced by numerical errors
or by perturbations possibly introduced in the

computational procedure, but instead represent the intrinsic
characteristics of the modified equation (3). Starting from
the analysis of the modified equation of the simple wave
equation (1), Jiang brought forward the dispersion
condition for non-oscillatory shock capturing schemes[1-3].
A single term in the series of the exact solution can be
given as
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Here, the first term on the right side represents the wave
amplitude evolution resulting from all of the dissipation
terms in the modified equation. The second term denotes
the wave propagating speed that depends on all of the
dispersion terms. Warming and Hyett[5] defined the
stability condition, C; <0. However, artificial viscosity
should be added to suppress the oscillation near the shock
waves. In Jiang’s shock capturing scheme[l,2), artificial
viscosity is no longer necessary when the dispersion
conditions are determined as C, >0 behind shock waves,
and C, <0 in front of shock waves. The primary idea
underlying these conditions is to force high-frequency
waves to concentraic at a shock wave by actively
changing the sign of the phase shift emors of numerical
schemes across a shock wave. The dispersion conditions,
together with the Warming’s stability condition, are
considered to be sufficient conditions for any
non-oscillatory shock capturing schemef1,2].
For the one-dimensional (1D) Euler equation
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Jiang formed the second order DCD (dispersion controlled
dissipative) scheme as
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sign(a) - min(abs(a),abs (b)),else
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where 7 is a unit matrix, 3= At/Az, and A, is the
diagonal matrix consisting of the -eigenvalues of the
Jacobian matrix A= aF(U)/aU. In these formulas, the
minmod limiter acts automatically as a shock wave
identifier, and flux vector splitting at a midpoint is carried
out using the Steger and Warming method[6].

2.2 EXTENSION TO THE MULTICOMPONENT REACTIVE FLOWS
2.2.1 GOVERNING EQUATIONS

This section extends the DCD scheme to the DCD-R
scheme for reactive flows in premixed multicomponent
mixtures. For simplification, only the unsteady convective
and reacting equations in two dimensional (2D) Cartesian
coordinates are considered as the governing equations,

alU  oF  8G
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Here, the vector consisting of unknown variables, U, the
convective flux vectors, F and &, and the chemical
reaction source term, .S are written as

pCy ma nC W,
1o mG nG Wy
v=| i |, F= : ,G=  s5=1| ¢
pCrs mCy, nC, w,,
m m¥p+p mn/p 0
n mn/p n’/p+p 0
E (E+p)m/p (E+pln/p 0
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These are the common forms and there are also other
asymmetric forms in some literature. Compared to the
governing system (5) for a pure gas fluid, the current
system includes a continuity equation and the production
term for each component. Here, the total density of the
mixture and partial density of the species i are denoted

by p and p;, and ¢, =p,/p(i=1,ns) is mass fraction of
the comesponding species. m=pu and n=pv are
momentums in the x and y directions, respectively. The
total energy density % is defined as

=ph—p+plul+?)/2. (72)

Each species is usually assumed to be a thermally perfect
gas, and the specific heat and enthalpy for each species
can be calculated by the thermal polynomial equations
given in[7]:

a’L
.T——ahT ta, T UInT+ay, + 24T
' a “ a a (73.1)
263 TTopa T8 3y 9
1 T+ 5 T 2 T+ T

Therefore, the mixture enthalpy A is the summation of all
the partial component enthalpies in the mixture, as
follows:

(732)
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According to Dalton's law, the pressure p is the sum of
the partial pressures of all species. It can be calculated by
the state equation:

p= E PR, T, (74)

i=1

where, R, is the gas constant of species 7, and 7' is the
temperature of the gas mixture. For an elementary
chemical reaction, the chemical production rate u';i, derived
from a reaction mechanism of nr chemical reactions, can
be calculated by
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where 7 and j denote the species number in the r th
clementary reaction. The molecular weight of each species
is denoted by W, v/, and ', are the stoichiometric
coefficient of species i in the r th reaction that appear as
the reactant and product, respectively. The molecular
concentration of each species is denoted by x;. k; and
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k. denote the forward and the backward reaction rates.
The forward reaction rate of each reaction is calculated by
the Arrhenius law (Bq. 7.5.1) and the corresponding
backward reaction rate can be derived from the
equilibrium constant (Eq. 7.5.2 - 7.5.3) and ks,

ks, = C.T"expl- Ea,/RT], (7.5.1)
Ky = ’V”.fr/'%er; (752)
_ S ( ” ’ ) Sir hir
Rep = €XD) = Vg =TV Rir - R”T
. (7.5.3)

More thermodynamic properties of each species, such as
the specific heat at a constant pressure and the specific
entropy, are given in[7], as follows:

C}Ji/Ri =a1iT72+a2iT71+a31; +a,T
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During the computation, the contribution from the fluid
dynamic terms is calculated first to obtain an intermediate
value of /. This is followed by a calculation accounting
for the chemical reaction contribution to evaluate ¢/ for
the next time step. This approach, termed the operator-split
algorithm as shown in (8), allows separate calculations of
the fluid dynamic and chemical reaction contributions with
different time steps to satisfy the At consistent with the
CFL condition and the required time scale for the stiff
ODEs of the reactions, respectively.

L(At) = me(%) [f} Lmem(%” Lm(%t—) ®)

n=1

The convective operator in (8) is implemented with the
DCD scheme. This is described in the following section.
The Jacobian matrices for the multicomponent system are
A=0F/oU, B=6G/aU.  For  simplification  and
symmetry, the first one is given here as:

1-Ch —Cu - -Cu (o4 0 0
—Cu  (1-Clu -~ —Cu C, 0 0

4l —Cu  —Cu 1-¢ ) e D 0
p,—u’  p,—w . p, —u® p 42 p, Pp

—uv —uv —uv v I 0
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Pp = UDPgs P, =" UPg, and 9.3)
H=(E+p)/p. (9.4)
The eigenvalues of the matrix A4 are obtained as:
{)‘1,)‘2,“' )‘ns+17/\ns+27 /\ns+3}
= {u.,u,--- wUu—a,u+al s (10)

where o= \/(H~u2—v2)pE+EClppl: VART is the
i=1

frozen sound speed of the mixture. In the above equations,
the circumflex over a variable represents the corresponding
property of the mixture. Therefore, the diagonal matrix
containing the eigenvalues is

A = dlag{)‘l/ /\27 . “7>‘ns’)‘ns+1’ )‘ns+2’ )\ns+3}~ (1 1)

At the same time, the corresponding left and right
eigenvectors of the Jacobian matrix A are denoted by L
and R, where L=R™ ! and A=R-A- L. With the
formulas mentioned above, two flux-splitting methods for
the DCD-R scheme are illustrated and discussed.

Based on the eigenvalue splitting, the first flux vector
splitting uses the Steger-Warming (SW) method[6],

AF :é(/\sip\s_i_gp’ s=1,-ns+3,0<e< 1. (12)

The split fluxes can be obtained directly by
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Therefore, with the split fluxes given by (13), the DCD-R
scheme is ready for a multicomponent system that has a
similar form and formulary process to those described in
(6). The split form of G is symmetric to that of F

The second method is the Lax-Friedrichs (LF) flux
splitting

Fr=R.-[L-(Ftal)]
[ Cuta)
Cy(uta)

C’ns(ﬁi—a)

(14)

H
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p
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where @ =12 (2.) The flux form appears even

simpler than the SW splitting.

With the SW (13) or LF (14) split flux mentioned
above, it is possible to implement the DCD scheme given
in (6) to obtain the numerical flux. The formulation is
straightforward and the matrix operation can be avoided in
programming. An alternative computational procedure is a
characteristic-wise flux splitting. In this method, the DCD
scheme is handled with the split flux in the characteristic
space in order to obtain an intermediate flux, which is
further projected back into the physical space to obtain the
final numerical flux. First, the variables shall be
transformed into the local characteristic space using

W=L-U. (15)
Second, the SW or LF flux splitting operation is applied
to each component of the flux in the characteristic space

by

FY (W) =A%t . w or (16)

Fi(VW:%[L-F(U)iaVﬂ. 17)

With these split fluxes, the DCD scheme is performed to
obtain the numerical flux in the characteristic fields, as
mentioned in (6),

H=F"+F . (18)

Finally, the numerical flux is transformed back into the
physical space using

H=R- I (19

In this method, the matrix operation and characteristic
decomposition are needed in computation. Hence, the
computational cost is greatly increased, but the method is
much more robust.

2.3 PROPERTIES OF THE DCD-R SCHEME

For the testing of the scheme properties, a shock tube
problem in a mixture of air is given, which is
approximated by 4N,+O, The set-up is a Riemann-type
initial condition

Ua0)=1," (20)

with p, =24160Pa, T, = 375K, pp = 2416 P, T, = 300K. The
normalized density, pressure and the Mach number are
shown in Figs. 1 and 2. In Fig. 1, it is clear that the
DCD-R scheme implemented with SW flux splitting (13),
performs well when the second-order Runge-Kutta method
and CFL < 0.75 are used for the time marching.
However, the nonphysical oscillation at a low frequency
results from the discontinuity contact when CFL = 0.6 and
the first-order time integration is wused, and severe
oscillation at a high frequency occurs near the leading
shock when CFL = 1 and the second-order Runge-Kutta
method is used.

As shown in Fig. 2(a), the LF splitting (15, 17-19)
solution appears nearly identical to SW splitting (13),
except that a slight discrepancy is present near the
rarefaction wave tail or the discontinuity contact. However,
the CFL constraint is less rigorous if the LF splitting
algorithm is applied in the characteristic space, as in Fig.
2(b). Even with a high CFL number of 1, a smooth
solution can be obtained without any nonphysical
oscillation. Numerical experiments show that the SW
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Figure 2 Comparison of the SW and LF flux splitting
methods (grid node: 200).

splitting method with the characteristic decomposition
(15,16,18,19) has the familiar performance of the LF
splitting (15, 17-19).

Due to the algorithmic simplicity and computational
efficiency, the SW (13) or LF (14) splitting method
without a matrix operation is recommended for the
DCD-R scheme. In addition, it is not possible to use a
high CFL number for chemically reactive flow simulations
as the required time marching step is primarily determined
by the stiff reaction terms. This can also explain the use
of the simple SW flux splitting in[1,2].

2.4 VERIFICATION
To verify the numerical algorithms for multicomponent
reacting flows, detonation waves reflections from wedges
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(a) (b

Figure 3 Verification by a comparison of the numerical (lower
half) and experimental Schlieren[8] (upper half) results
of the detonation reflections over wedges with angles of
(a) 30°, and (b) 60° in a mixture of 2H,+Oy+Ar, Pe=20
kPa.

with different wedge angles in stoichiometric mixtures of
hydrogen and oxygen diluted by 25% Argon (2H;+O,t+Ar,
Pg=20kPa at room temperature) were simulated and then
compared with experimental Schlieren results. Two types
of reflection mechanisms of detonation waves, regular and
Mach reflections are shown in Fig. 3, in which the
experimental pictures are placed in the upper half and the
numerical results in the lower half. From these figures, it
can be seen that the angle of the triple point trajectory,
X in Fig. 3(a) and the reflection angle in Fig. 3(b) are
in good agreement with the experiments.

3. APPLICATIONS

3.1 CASE 1: SHOCK TUBE PROBLEM

In a ground test facility, such as a shock tunnel, the
primary objective is to generate high enthalpy flows to
simulate the actual flight conditions around a high-speed
vehicle. In the first application case, the shock tube
problem is utilized again to demonstrate that a lighter
driver gas with a smaller molecular weight can achieve a
test flow with higher total enthalpy. The initial set-up is
as follows: the pressure ratio, p,/p, =10000, the
temperature ratio, 7,/7, =1.25, the test gas is 4N,+O,,
and two types of driver gases, 4N,+O, and He, are used.
The results are shown in Fig. 4. The total enthalpy of the
test gas with the helium driver gas increases three-fold
compared to that with the air driver gas.

driver : O2+4N2 |
test : O2HN2 |/
p2 :pl = 10000 |
T2 : T1 =125 [

test : O2-4N2 |
p2 : pl = 10000 [;
T2 : T1 = 1.25

(b)
Figure 4 Shock tube problem for high-enthalpy test flows.

3.2 CASE 2: DETONATION WAVE PROPAGATION

In short, a detonation wave is a strong shock wave
followed by a reaction zone. The energy released from the
reaction zone supports the leading shock, while the
adiabatic compression of the leading shock facilitates the
induction or exothermic reaction. These kinetic and gas
dynamic processes allow a detonation wave coupling and
further allow it to be self-sustaining. It is well known that
in the detonation front structure, the leading shock is
wrinkled and consists of alternating weak incident shocks
and stronger Mach stems that are jointed at triple points
by transverse waves that travel back and forth
perpendicular to the wave front and extend back into the
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Figure 5 Multi-wave front structure of a detonation wave
diffracting over a wedge surface.

Figure 6 The reactive components and the asymmetri reaction
fields.

reaction zones. The transverse waves interact with the
reaction zones behind the leading shock and induce
endothermic induction or an exothermic combination that
depends on the local wave structures. From the viewpoint
of mathematics, the problem of detonation wave
propagation can be simplified as an unsteady, convective,
and reacting flow.

The DCD-R scheme was applied to simulate the
detonation  diffraction over wedge surfaces as reported
in[4]. Several results are given in Figs. 5 and 6. In
particular, Fig. 5 shows the evolution of the multi-wave
structures, collisions between transverse waves, and the
alternating of the incident shocks and Mach stems while a
cellular detonation wave is diffracting. Figure 6 illustrates
the distribution of the reactive components and the
asymmetrical reaction fields induced by the complicated
wave processes mentioned above,

4. CONCLUSIONS

In this paper, the principle of the dispersion controlled
dissipative (DCD) scheme is briefly reviewed and then
extended to simulate chemically reacting flows in
multicomponent mixtures in the presence of strong shock
waves. In addition, the property of the reactive DCD
(DCD-R) scheme is discussed by investigating shock tube

problems with different driver gases and wave dynamic
processes as a cellular detonation wave diffracts over a
wedge surface. The DCD scheme was shown to have
favorable features such as high accuracy and robustness
for chemically reacting flows in the presence of strong
shock waves and algorithmic simplicity.
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