COMPARATIVE STUDY ON FLUX FUNCTIONS AND LIMITERS FOR THE EULER EQUATIONS

Euler 방정식의 유량함수(Flux Function)와 제한자(Limiter) 특성 비교 연구

  • 채은정 (인하대학교 대학원 항공공학과) ;
  • 이승수 (인하대학교 기계공학부 항공우주)
  • Published : 2007.03.31

Abstract

A comparative study on flux functions for the 2-dimensional Euler equations has been conducted. Explicit 4-stage Runge-Kutta method is used to integrate the equations. Flux functions used in the study are Steger-Warming's, van Leer's, Godunov's, Osher's(physical order and natural order), Roe's, HLLE, AUSM, AUSM+, AUSMPW+ and M-AUSMPW+. The performance of MUSCL limiters and MLP limiters in conjunction with flux functions are compared extensively for steady and unsteady problems.

Keywords

References

  1. Roe. P.L., 1981, "Approximate Riemann Solver, Parameter Vectors and Difference Scheme," J. Computational Physics, Vol.43, pp.135-372
  2. Osher. S., and Chakavarthy. S.R., 1983, "Numerical Experiments with Osher Upwind Scheme with Euler Equation," AIAA J., Vol.21, NO.9
  3. Steger. J.L. and Warming. R.F., 1981, "Flux Vector Splitting of the Inviscid Gasdynamic Equation with Application to Finite Difference Method," J. Computational Physics, Vol.40, pp.263-293 https://doi.org/10.1016/0021-9991(81)90210-2
  4. Van Leer. B., 1982, "Flux Vector Splitting for the Euler Equations," Technical Report ICASE 82-30, NASA Langley Research Center, USA
  5. Liou. M.S. and Steffen Jr. C.J., 1993, "A New Flux Splitting Scheme," J. Computational Physics, Vol.107, pp.22-39
  6. Liou. M.S., 1996, "A Sequel to AUSM : AUSM+," J. Computational Physics, Vol.129, pp.364-382 https://doi.org/10.1006/jcph.1996.0256
  7. Kim. K.H., Kim. C. and Rho. O-H., 2001, "Methods for the Accurate Computations of Hypersonic Flows 1. AUSMPW+ Scheme," J. Computational Physics, Vol.174, pp.38-80 https://doi.org/10.1006/jcph.2001.6873
  8. Kim. K.H. and Kim. C., 2005, "Accurate, Efficient and Monotonic Numerical Methods for Multi-dimensional Compressible Flows Part 1: Spatial Discretization," J. Computational Physics, Vol.208, pp.527-569 https://doi.org/10.1016/j.jcp.2005.02.021
  9. Van Leer. B., 1974, "Towards the Ultimate Conservative Difference Scheme 2. Monotonicity and Conservation Combined in a Second Order Scheme," J. Computational Physics, Vol.14, pp.361-370 https://doi.org/10.1016/0021-9991(74)90019-9
  10. Kim. K.H. and Kim. C., 2005, "Accurate, Efficient and Monotonic Numerical Methods for Multi-dimensional Compressible Flows Part 2: Multi-dimensional Limiting Process," J. Computational Physics, Vol.208, pp.570-615 https://doi.org/10.1016/j.jcp.2005.02.022
  11. Godunov. S.K., 1959, "A Difference Scheme for Numerical Computation of Discontinuous Solutions of Equations of Fluid Dynamics," Math. Sb., Vol.47, pp.357-393
  12. Einfeldt. B., 1988, "On Godunov-type Methods for Gas Dynamics," SIAM. J. Numer. Anal., Vol.25, pp.294-318 https://doi.org/10.1137/0725021
  13. Woodward. P. and Colella. P., 1984, "The Numerical Simulation of Two-dimensional Fluid Flow with Strong Shocks," J. Computational Physics, Vol.54, pp.115-173 https://doi.org/10.1016/0021-9991(84)90142-6
  14. Quirk. J., 1994, "A Contribution to the Great Riemann Solver Debate," J. Numerical Methods In Fluids, Vol.18, pp.555-574 https://doi.org/10.1002/fld.1650180603
  15. Phongthanapanich. S. and Dechaumphai.. P., 2004, "Flux-Difference Splitting Scheme with Modified Multidimensional Dissipation on Unstructured Meshes," J. Chinese Institute of Engineers, Vol.27, No.7, pp.981-992 https://doi.org/10.1080/02533839.2004.9670953
  16. Toro. E.F., 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer
  17. Hirsch. C., 1990, Numerical Computation of Internal and External at Flows, John Wiley & Sons., Vol.1, 2
  18. Liou. M.S., 1997, "Probing Numerical Fluxes: Mass Flux, Positivity, and Entropy -Satisfying Property," AIAA Paper., 2035, pp.943-954
  19. Gressier. J. and Moschetta. J.M., 1997, "On the Pathological Behavior of Upwind Schemes," AIAA Paper., 0110, pp.1-8
  20. Lin. H., 1991, "Dissipation Additions to Flux- Difference Splitting," AIAA Paper., 1544, pp.190-198
  21. Marie-Claude. D. and Zeitoun. D.E., 2003, "Influence of Numerical and Viscous Dissipation on Shock Wave Reflections in Supersonic Steady Flows," Computers & Fluids., 32, pp.515-533 https://doi.org/10.1016/S0045-7930(02)00002-6
  22. Ren. Y., 2003, "A Robust Shock-Capturing Scheme Based on Rotated Riemann Solvers," Computers & Fluids., 32, pp.1379-1403 https://doi.org/10.1016/S0045-7930(02)00114-7