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1. Introduction

The estimation of mortality characteristics of industrial
property is an important adjunct to engineering vatuation and
depreciation estimates. Once the importance of depreciation
estimates is determined, it is desirable to understand the proc-
esses upon which these estimates are based. The processes
upon which estimates are based can be generally classified
into two distinct procedures : life analysis and life estimation.

Life analysis is the process of aggregating and analyzing
the historical record of property for the purpose of obtaining
information about the mortality characteristics of property.
Life estimation may be thought of as the use of judgement
in applying the results of life analysis to estimate the mortal-
ity characteristics of industrial property. Life analysis and
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life estimation are different processes since the former is con-
cerned which an analysis of the past whereas the latter is
generally concerned with a prediction of the future, but not
exclusively.

Property life analysts have adapted certain of techniques
from the field of actuarial science to summarize their data
[10]. The usual outcome of the most frequently used of these
techniques, the retirement and the property’s age. Typically,
this relationship is given as either conditional failure for sur-
vival rates at various ages. the latter in graphical form pro-
duce a survivor curve that indicates the portion of any group
of like-aged items remaining in service at a given age.

Since these analytical results are many times erratic and
generally of less than full life cycle, mathematical or graphicat
procedures are utilized to smooth and extrapolate the data as
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necessary to make it more useful. A number of techniques
are used to accomplish this, including a variety of mathematical
equations and sets of standardized survivor curves [11, 12].

Probably the most widely recognized and used systems
of standardized curves is that known as the Towa type curves.
It was in June 1931 that the Iowa Engineering Experiment
Station of Towa State College published Bulletin 103 by
Robley Winfrey and Edwin B. Kurtz [18]. This publication
was the original one in a series from lowa State College
(now lowa State University) dealing with the life character-
istics of physical property and their relationships to valuation
and depreciation. Between 1931 and 1935, Winfrey con-
tinued data collection and added 111 property group curves
to the 65 used 1931. From these 176 curves, 18 standard
lowa type curves emerged in 1935 when Winfrey wrote the
still existent lowa Engineering Experiment Station Bulletin
125 [19]. A revised edition of Bulletin 125 was made avail-
able in 1967 by the Iowa State University Engineering
Research Institute, successor to the lowa Engineering Experi-
ment Station. The revision included the addition of four ori-
gin modal (O type) standard curves empirically developed
by Frank Couch [1]; thus the total array was increased to
22. Nine additional standard curve types have since been
recognized by some users, although their development did
not necessitate further work with actual property data. The
single square curve and the eight so-called “half curves” have,
in a pragmatic way, been made part of the system by use.

The object of this study is to analyze the ability of the
Weibull distribution to describe industrial property mortality
characteristics. Thirty three sets of data were used in this
study. These data were collected by Russo [15] to revalidate
the Towa curves in use under current economic, techno-
logical, and managerial conditions.

2. Survivor Functions and Weibull
Function

2.1 Some Survivor Functions

Theoretically, any proper distribution might be used as
a survivor function. In real situation, however, certain fami-
lies of distributions are especially useful for fitting survival
data. Properties of exponential, Weibull, Log-normal, Gamma,
generalized Gamma, and Log-logistic distributions are dis-
cussed by Jonson and Kot z[8], who also give extensive bib-
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liographies on these distributions. Some of these distributions
are also discussed by Cox [2], Mann et al. [9] and Gross
and Clark [4]. The generalized Gamma distribution was in-
troduced by Stacy [16] and has been discussed by Parr and
Webster [13], Harter [6], Hagar and Bain [5]. The general-
ized F-distribution is discussed by Prentice [14].

When fitting survivor functions, the choice of the form
of survivor distribution(i.e., the family to which it belongs)
is supposed to have already been decided. Our interest is
then in estimating values of the parameters appearing in the
mathematical formula for the survivor function of the family
of distributions considered.

2.2 The Weibull Distribution

The Weibull distribution, named after its conceiver,
Waloddi Weibull [17], is the most widely used survivor
functions. Weibull proposed a cumulative distribution func-
tion of the form

P(X) = 1 — exp(_np(x)) ........................................................ (1)

where, P(x) = probability of an event,
n = number of possible events,
p(x) = function of the population,
x = some measure of each individual in the
population.

Equation (1) does not have much meaning until p(x) is
defined. weibull specified that p(x) be a positive, non-de-
creasing function, vanishing at p(p is not necessary zero).
The simplest form satisfying these condition is;

(@—p)™

np(x) = et )

In most reliability application, P(x) is considered to be
. 1. . .
the retirement function, z,(change to E) is said to be pro-

portional to the reciprocal mean time to failure, p is set to
zero, m is changed to 3, and x is considered to be age.
After making all necessary substitutions into equation (2),
the Weibull distribution for the retirement function or cumu-

lative function becomes,

Fx) =1 — exp(— @ a:'B) ..................................................... (3)

where, x = age of time
o

B

scale parameter

shape parameter.



68 285 -

Rearranging equation (3) gives the survivor function :

8(x) = exp(—

Differencing equation (4) gives the retirement frequency
function or the probability density function as

f(x) = aﬁxﬁ_l exp(— a:c’ﬁ) ............................................. (5)

The hazard rate or the retirement rate is defined as the
retirement frequency function divided by the survivor func-
tion :

3. Procedures

The procedures necessary to carry out the objectives of
this study can be generally classified into three categories :
i) data selection, ii) estimating Weibull parameters to data,
and iii) testing the resulting Weibull sets against the lowa
type survivor curves.

3.1 Data

The data used in this study are the same data as were
collected by Russo [15]. Aged mortality data were collected
for over 1,500 accounts from the various types of industries :
gas transmission, water, electric, roads and highways, and
commercial. Of the 1,500 accounts collected, 490 were se-
lected that had latest experience years and that had survivor
curves extending below 20%. A clustering procedures was
then employed to produce thirty three subgroups of curves
with related shapes within each modal group. Finally, thirty
three curves obtained by averaging the subgroups of curves
and were used in this study.

3.2 Estimation of Weibull parameters

In this study, the survivor function is the medium for esti-
mating the parameters and an iterative process is investigated.
The graphical method gives fast but rough estimate, and con-
sequently is not explored in detail.

3.2.1 The modified Gauss-Newton iteration ‘
This procedure developed by Hartley [7] determines pa-
rameters « and g for the sum of squares,

- BB
e, B) = E xl,a ﬂ)] ................................ (7
where, Y. = observed value

(3

Flay a, B) = exp(— az?)

minimizing.
Note that f(x;,

not the retirement frequency function. One of the necessary

@, (3) represents the survivor function,

assumptions for facilitation of the procedures is that the parti-
al derivatives of S(x) with respect to « and [ are continuous:

d_f = f1($i’a) = -xﬂexp(—azﬂ) ........................... (8)
do

and
% = fy(z;, 8) = —az’logz exp(— a gf) e 9

With the above condition satisfied, equation (7) can be
differentiated a follows :

99 _ Qe a)
B 21 Y= a0 )] il @) s 10)
and :
9 - )

I~

= —2 [Y;*f(lvi,aaﬁ)] fz(xi,’

i=1

Next, expand a Taylor series for ¢ about « and @,

about 3, which results in:

ifl(l’ﬁ ao)[ﬁ(%v O10)171 + fQ(xi’ ﬁo)D2]

i=1

-

[Y7 f(x'ﬂ @ ﬁo)]fl (xl7 O‘O) ................................. (]2)

=1

and

i fQ(mi’ 50)[f1 <$7:> O‘o)Dl + f2(37iv 50)02]

1=

[Y; f(l’l, Qg ﬁo)]fl( Z; ﬂo) """"""""""""""""" (13)

i=1
The corrections for o, and j3, are proportional to the sol-
utions Di(i.e., D, and D,) of the Gauss-Newton equations

such that,



By = Byt Uy e (15)
where, «, = initial estimate of o

«, = corrected estimate of o

B, = initial estimate of 3

B, = corrected estimate of S

v = a value between 0 and 1

The estimate of v is determined by successive trials of
V evaluated from,

1

V= 2](:—]

............................................................................... (16)

where, k = trial number,
until the sum of squares Q(a,+vD,, B,+vD,) is less than
Qo By). The v equals the last 1 evaluated from equation
(16) which gives an improvement (i.e., decrease) in the sum
“of squares. The corrected «; and 3, served as starting values
for next iteration. This process is repeated until sum if
squares shows negligible improvement, i.e., net change less
than 10°°,

3.2.2 Mixure distribution

A mixture of two distributions, each belonging to the same
known Weibull distributions, is proposed, and a simple
graphical method for estimating the parameters of the mixed
distribution is applied. The first step is to plot the observed
survivor curve. From such a plot, we may get some in-
dication whether we need a second component. Suppose that
there are two components and their location parameters differ
sufficiently (as compared with the scale parameters). Thus,
the survivor function for lower (higher) values should reflect
mainly variation of the component with lower (higher) value
of location parameter [3]. Denoting the survivor functions
of the two components by .S,(z) (i= 1, 2), the mixture survi-

vor function is
S(CE) — VSl(:L‘) + (1 _ I/) 52(1,) ..................................... (17)

where v (0< v <1) is the proportion of the first component
in the mixture survivor function. Under the stated assump-
tions, S, (x) corresponds overall to much shorter life time
than S,(z). For small values of x, we then have S,(z)=1,
and

5(2) = 18, (@) + (L = p) wmmsme (18)
or :
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F(.T) — ’/[1 _ Sl(x)] = VFI(:L') ..................................... (19)
On the other hand, for large values of x,

S, (z)=0 and so,
S(x) — (1 — I/) SZ(I) ......................................................... (20)

From equation (20), we have

SZ(ZE)Z ‘f(_x) ...................................................................... (21)
v
and to estimate S,{z), we have plot
log[—logl(1—v) 719 (2)]]
= log[log(l—l/) — logS(x)] ....................................... (22)

against log ¢. We use a series of trial values of log(1—v)
until we get the nearest approach(in our judgement) to a
straight line. The lower part of the survivor curve will be
estimated by S, (x). From the equation (19),

Plotting log[—log[1— v~ "F(z)]] against logz we
would get a nearly straight line plot. A more symmetrical
approach would be obtain simultaneously plots of :

log[~log[(1—v)7'S(2)]]
against log = for higher value of x, and
log[—log[l —v 'F(x)]]

against log z for lower value of z, and try to make both
as nearly linear as possible by varying v. The results are
summarized in <Table 1>

3.3 Statistical testing

3.3.1 Test curves and testing

Just as with the choice of the original data for the study,
the test curves were randomly chosen to represent as great
industrial property types as possible. The data from totally
separate companies for testing were as follows: electric
utilities, gas utilities, telephone company. Thus, a total
of 25 test curves, all 0% surviving, were prepared for
testing. Preparation involved formulation of survivor
curves by the retirement rate method so that graphic com-
parisons with Weibull fitting and Towa type curves could
be accomplished.
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{Table 1> Results of mixed Weibull function

sum of
(il;g;e %age @ 8 sqL_Jared
residuals
1 99 1.6400E-05 2.69342750 1555.2
246 1.2416E-02 0.78716639 54214
2 177 5.0000E-07 2.87662931 7016.4
300 1.9802E-01 0.59517092 1.2
3 89 5.5100E-06 2.57294586 47322
210 3.3297E-04 1.62888544 3196.0
4 71 1.0000E-09 472984100 28212.7
300 6.5280E-03 1.23400996 427.8
5 129 6.0620E-05 2.04552907 3006.2
300 5.7900E-02 0.65617938 195.6
6 274 2.5067E-04 1.72146922 7888.1
7 300 5.0909E-03 1.09247138 1023.5
8 300 3.1632E-03 1.23736426 6020.9
9 69 8.0220E-10 4.51405023 62660.0
300 4.2564E-01 0.31517573 363.0
10 59 6.5700E-05 2.03095583 204.1
300 2.1853E-04 1.82667388 32376
11 69 2.8770E-05 1.66828862 6.7
300 1.3190E-05 2.43244803 14546.6
12 192 1.1684E-04 1.82211558 3855.7
299 7.1500E-07 2.87805121 52.1
13 300 3.6118E-04 1.66723086 155.7
14 300 2.0856E-03 1.20791464 4643.5
15 300 1.6945E-05 2.31743486 3694.5
16 96 2.2363E-07 3.18053984 4812.7
229 3.7136E-01 0.25677454 2673.3
17 97 2.2037E-05 1.83043340 465.5
161 6.1000E-08 3.37331470 4834.2
18 92 3.4442E-04 1.47894475 327
237 1.6407E-08 3.67853893 1853.5
19 300 5.2083E-04 1.58487959 1705.3
20 91 5.5429E-07 2.60293137 2157
241 8.4365E-10 4.45958204 7248.0
21 300 2.6897E-05 2.21888493 6301.4
22 78 4.7473E-07 2.98830121 2381.8
223 7.8930E-05 1.86905974 2292.8
23 135 1.8225E-04 1.44563099 781.9
300 2.5705E-01 0.11655903 803.8
24 238 2.1904E-03 1.17952908 3965.5
25 212 4.5000E-07 242269125 5018.2
26 173 3.8900E-06 2.49838409 8632.6
27 98 2.3326E-06 2.65814990 208.5
261 8.5453E-03 0.9919594 3988.7
28 102 3.9020E-05 1.81040189 114.5
172 6.9683E-15 6.72062184 700.5
29 190 6.0802E-04 1.46094362 4220.2
300 4.4999E-02 0.85740228 122.0
30 170 2.2980E-05 222001376 9260.1
300 5.7636E-02 0.87360292 0.8
31 300 8.0112E-05 1.96587733 2196.0
32 300 2.7317E-05 2.21227444 42937
33 87 5.6590E-05 1.80716709 249.1
295 1.6700E-06 2.82777044 15467.3

The test involved computer fitting of the 25 test curves
to both the Weibull fitting array and lowa type curves to
determine which produced the best fit for each teat curve.
The test curves were held constant in each case and the
Weibull fitting and Iowa type curves adjusted until the clos-
est fit were found. Since the average service life of each
test curve could be easily determined by the area under the
survivor curve, a starting point for each curve of the curve
sets was established. Thus, with this average service life
starting point, curve set shapes determined by average service
lives, adjacent to the starting point average service life, could
be investigated until the least area between each test curve
and the Weibull fitting and lowa type curve was found. The
test curve average service life was used simply as a device
to start the investigation of which standard curve best fit
the test curve. The final criteria of best fit were the total
area between the curves. All areas were considered to be
positive in sign, so full variation was indicated. Thus, for’
each test curve the area between the test curve and the fit
curves of each set were projected.

3.32 Statistical treatments of test results

Three statistical procedures were chosen for analysis of
the 25 test curves fit to Weibull and the Iowa type curves.
The procedures were chosen so that conclusions could be
drawn as to which curve set best fit the test curves. Each
of the three procedures was applied to the area differences
as a reflection of dispersion from the fitting tests.

(1) sign test

This test is non-parametric. While it does not reflect rela-
tive or absolute magnitudes of differences in population
means, it does reflect direction in that larger or smaller mem-
ber of a pair of observations is identified.

The sign test was applied to areas as follows : Define,

Ay —Ar = Dy

where, A, = the area between each teat curve and its best
tit Weibull fitting

A; = the area between each teat curve and its best

fit Towa type curve
Let P equal the probability that D,,_, = 0 (ie., lowa type
curve fitting is better); then test the hypotheses :

Hy,» P< 05
H, : P>05



The test statistics :

_ z—nl05)
T Vn(05)(05)

where, n = sample size
x = number of times Dy, >0 in a sample of size
n
follows standard normal distribution, NV (0, 1). Reject H, if
Z value is substantially greater than a critical value, depends
on the level of significance desired.

(2) Wilcoxon test for paired observations

This test is non-parametric and is more sensitive than the
sign test in that it reflects the relative magnitude of differ-
ences in population central tendencies. It is accomplished by
ranking the differences between paired values and applying
the ranking in statistics as outlined below. Let C'WWy,_; be
the true central tendency for the paired differences for the
population between lowa and Weibull fitting ; then test the
hypothesis :

Hy . CWy_ ;<0
H : CWy ;>0

The test statistic :

T— CTy,

Ow

where, 7 = the total of the rank numbers with positive differ-
ence when all differences are ranked from 1 (smallest) to
n (largest),

_ n{n+1)
OTW-——4 ,
o nin+1)(2n+1)

w 24 )

follows standard normal distribution, N(0, 1). Reject H, if
Z value is substantially greater than a critical value, depends
on the level of significance desired.

(3) Parametric test for paired observations

This test is parametric and reflects the actual magnitude
of differences in population means. It concentrates on and
compares mean optimal area of Weibull fitting and Iowa type
vurves and somewhat better discriminating powers than other
two tests or rejecting A, if Z truly deserves to be rejected

when normality can be assumed. Let p, and gy be the true
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means for population when the Towa curves and Weibull fit-
tings, respectively, are used; then test the hypothesis:

Hy: pr=—pw=pw-r=0
Hy o opr—pw= pw—1>0

The test statistic :

where, S, = sample standard deviation,

ADy,_, = the mean of the differences of areas,

follows t-distribution. Reject Ay if T value is substantially
greater than a critical value, depends on the level of sig-
nificance desired.

4. Results and discussion
4.1 Subjective analysis

Subjective analysis involved a thorough review of fitting
test curves to the lowa type curves and the Weibull
distribution. The results of fitting test curves are summarized
in <Table 2>.

The following was evident concerning the 25 test curves
fit to the Towa type curves and the Weibull fittings.

1. Based on the area difference and visual review of the
fits, the Weibull fitting produced 10 best fits, the Iowa
type curves 15 best fits. This is reflected in the remarks
column of <Table 2>.

2. Of the 10 best curves best fit by the Weibull fitting, 4
were left modal, 3 symmetrical modal, and 3 right modal.

3. Of the 15 best curves fit by the Iowa type curve, 2 were
origin modal; 6 left modal, 1 symmetrical modal, and 6
right modal.

4. Of the total array of the 31 Iowa type curves, 15 curves
did not produce any fits, no matter whether best fit or
not. These non-fit curves included 9 symmetrical modal,
1 left modal, 2 right modal, 2 origin modal, and the square
curve,

5. Of the total array of the 33 Weibull fittings, 17 curves did
not produce ant fits, no matter whether best fit or not.
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{Table 2> Results of fitting test curves
Test Weibull fitting lowa curves
curve |curve | area differ. | curve | area differ. | Remark
number | No. | (sg. %units) | No. | (sq. %units)
1 2 1217.0 R1S5 1026.0 I
2 8 1243.0 03 1338.0 W
3 28 908.0 R5 730.0 1
4 13 634.0 Lo 599.0 I
5 29 1707.0 RO.5 1560.0 1
6 21 882.0 R2 671.0 1
7 13 1296.0 02 1256.0 1
8 28 749.0 RS 540.0 1
9 32 695.0 St.5 634.0 1
10 15 502.0 L2 495.0 1
11 21 869.0 L3 883.0 1
12 19 487.0 L0.5 250.0 I
13 13 408.0 L0 475.0 w
14 2 1130.0 R3 1365.0 W
15 7 1509.0 02 1398.0 I
16 11 491.0 L4 343.0 I
17 3 1145.0 L2 1241.0 \
18 21 669.0 L2 705.0 w
19 29 1465.0 Rt 1343.0 I
20 31 605.0 RO.5 637.0 W
21 15 311.0 L15 307.0 I
22 33 3320 R3 408.0 W
23 18 814.0 R15 842.0 W
24 11 733.0 L3 533.0 I
25 33 464.0 L1 475.0 i

4.2 Statistical objective analysis

As outlined in the previous section of this study, statistical
test were performed on the data that resulted from fitting
the 25 test curves to the Weibull fittings and the lowa type
curves. The results for each of these statistical tests are sum-
marized in <Table 3>.

{Table 3> Results of statistical tests

| g T e
sign test Z=10 1.64
Wilcoxon test Z = -1.681 1.64
parametric test T=196 2.06

4.2.1 Results of sign test
This test failed to adduce evidence that the Iowa type

curves produced better fits than the Weibull fitting, since
Z value calculated was 1.0. The value of Z would have to
have been substantially greater than 1.64 to reject the null

hypothesis that indicated that the Weibull fitting produced
at least as good or better fits than the Iowa type curve.
Although not conclusive in itself, this test provides evidence
that the Weibull fitting would produce at least as good fits
a population of industrial property when considering areas.

4.2.2 Results of Wilcoxon test

This test is more sensitives than the sign test in reflecting
relative magnitude of difference in population central tendencies.
This relative magnitude of difference produced a Z value
calculated as -1.68. Thus, the test failed to adduce evidence
the Iowa type curves produced better fits than the Weibull
fitting. The value of Z would have to have been substantially
greater than 1.64 to reject the null hypothesis that indicated
that the Weibull fitting produced at least as good or better
fits than the Iowa type curve. Although not conclusive in
itself, those two tests provide evidence that the Weibull fit-
ting would produce at least as good fits a population of in-
dustrial property when considering areas.

4.2.3 Results of Parametric test

This test concentrated on and compared mean optimal
areas of the Weibull fittings and Iowa curves and had some-
what better discriminating powers than the other two tests.
This test also failed to adduce evidence the lowa type curves
produced better fits than the Weibull fitting, since the 7 val-
ue calculated was 1.96. The value of 7 would have to have
been substantially greater than 2.06 to reject the null hypoth-
esis that indicated that the Weibull fitting produced at least
as good or better fits than the lowa type curve. Although
not conclusive in itself, those three tests provide strong evi-
dence that the Weibull fitting would produce at least as good
fits a population of industrial property when considering

arcas.

5. Conclusions

The study undertaken in this study was prompted because
of the search for a relatively simple mathematical expression
which would describe industrial property mortality character-
istics. While there are undoubtedly many expressions which
could be tried, for theoretical reasons the Weibull distribution
was chosen. Because the Iowa type curves are widely used
in the field of life estimation they were used as the standard
against which to compare the Weibull distribution fitting, A
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total of 25 test accounts, all with 0% surviving, were pre-
pared for testing. The tests involved fitting of each test curve
to each set of curves to determine which set produced the
best fit based on area difference between the test curve and
the fit curves.

It appears from the results of this study that the Weibull
distribution is an appropriate expression for describing in-
dustrial property mortality characteristics. The conclusions
was based on the following evidences provided by the study :

1. The results of the statistical treatment and analysis of the
test curves fit to the Weibull fitting and the Towa type
curves. Virtually all statistical evidence indicated that
there is no significant difference between the two methods.

2. Based on the area difference and visual review of the
fits, the Weibull fittings produced 10 best fits, the Iowa
curves 15 best fits.
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