DOI QR코드

DOI QR Code

Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method

전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석

  • Lee, Ji-Hoon (Department of Mechanical and Industrial System Engineering, KyungHee University) ;
  • Baik, Young-Nam (Department of Mechanical and Industrial System Engineering, KyungHee University) ;
  • Kim, Young-Seok (Surface Nano-Technology Team, Korea Institute of Industrial Technology(KITECH)) ;
  • Shin, Seung-Han (Surface Nano-Technology Team, Korea Institute of Industrial Technology(KITECH))
  • 이지훈 (경희대학교 기계산업시스템 공학부) ;
  • 백영남 (경희대학교 기계산업시스템 공학부) ;
  • 김영석 (한국생산기술연구원 나노표면기술팀) ;
  • 신승한 (한국생산기술연구원 나노표면기술팀)
  • Published : 2007.02.28

Abstract

Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Keywords

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 359 (1992) 710 https://doi.org/10.1038/359710a0
  2. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater., 6 (1994) 1176 https://doi.org/10.1021/cm00044a016
  3. S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. Intl. Ed. Engl., 35 (1996) 1102 https://doi.org/10.1002/anie.199611021
  4. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chern. Soc., 120 (1998) 6024 https://doi.org/10.1021/ja974025i
  5. F. Lerox, B. E. Koene, L. F. Nazar, J. Electrochem. Soc., 143 (1996) L181 https://doi.org/10.1149/1.1837078
  6. S. Ye, A. K Vijh, L. H. Dao, J. Electrochem. Soc., 143 (1996) L7 https://doi.org/10.1149/1.1836373
  7. W. G. Pell, B. E. Conway, J. Power Sources, 63 (1996) 255 https://doi.org/10.1016/S0378-7753(96)02525-6
  8. G. S. Attard, J. C. Glyde, C. G. Goltner, Nature, 378 (1995) 366 https://doi.org/10.1038/378366a0
  9. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. Wang, Science, 278 (1997) 838 https://doi.org/10.1126/science.278.5339.838
  10. G. S. Attard, M. Edgar, C. G. Goltner, Acta. Mater., 46 (1998) 751 https://doi.org/10.1016/S1359-6454(97)00256-5
  11. J. M. Elliott, P. R. Birkin, P. N. Bartlett, G. S. Attard, Langmuir, 15 (1999) 7411 https://doi.org/10.1021/la9908945
  12. C. J. Brumlik, C. R. Martin, J. Am. Chem. Soc., 113 (1991) 3174 https://doi.org/10.1021/ja00008a057
  13. P. A. Nelson, J. M. Elliot, G. S. Attard, J. R. Owen, Chem. Mater. 14 (2002) 524 https://doi.org/10.1021/cm011021a
  14. Pulickel M. Ajayan, Linda S. Schadler, Paul V. Braun, Nanocomposite Science and Technology, Wiley-VCH, (2003) 178
  15. P. N. Bartlett, P. N. Birkin, M. A. Ghanem, J. Electrochem. Soc., 148(2) (2001) C119 https://doi.org/10.1149/1.1342178
  16. L. D. Burke, T. A. M. Twomey, J. Electroanal. Chem., 162 (1984) 101 https://doi.org/10.1016/S0022-0728(84)80158-8