Application of Living Ionic Polymerizations to the Design of AB-Type Comb-like Copolymers of Various Topologies and Organizations

  • Lanson, David (Laboratoire de Chimie des Polymeres Organiques, UMR CNRS-ENSCPB 5629, Universite Bordeaux 1 France) ;
  • Ariura, Fumi (Laboratoire de Chimie des Polymeres Organiques, UMR CNRS-ENSCPB 5629, Universite Bordeaux 1 France) ;
  • Schappacher, Michel (Laboratoire de Chimie des Polymeres Organiques, UMR CNRS-ENSCPB 5629, Universite Bordeaux 1 France) ;
  • Borsali, Redouane (Laboratoire de Chimie des Polymeres Organiques, UMR CNRS-ENSCPB 5629, Universite Bordeaux 1 France) ;
  • Deffieux, Alain (Laboratoire de Chimie des Polymeres Organiques, UMR CNRS-ENSCPB 5629, Universite Bordeaux 1 France)
  • Published : 2007.03.31

Abstract

Living anionic and cationic polymerizations have been combined to prepare various types of comb-like copolymers composed of polystyrene (PS) and polyisoprene (PI) blocks, with a precisely controlled architecture. According to the relative placement of these elementary building blocks, combs with randomly distributed PS and PI or with poly(styrene-b-isoprene) diblock branches (I & II, respectively) can be prepared. The reaction procedure initially includes the synthesis of a poly(chloroethylvinyl ether) using living cationic polymerization, which is used as the reactive backbone to successively graft $PS^-Li^+$ and $PI^-Li^+$ or $PI-b-PS^-Li^+$ to obtain structures (I) or (II). The synthesis of Janus-type PS-comb-b-PI-combs (III) initially involves the synthesis of a diblock backbone using living cationic polymerization, which bears two distinct reactive functions having either a protected or activated form. Living $PS^-Li^+$ and $PI^-Li^+$ are then grafted, in two separate steps, onto each of the reactive functions of the backbone, respectively.

Keywords

References

  1. D. E. Discher and A. Eisenberg, Science, 297, (5583) 967 (2002)
  2. Ikkala and G. Ten Brinke, Chem. Commun., 10, 2131 (2004)
  3. H. Klok and S. Lecommandoux, Adv. Mater., 13, 1217 (2001)
  4. T. P. Lodge, Macromol. Chem. Phys., 204, 265 (2003) https://doi.org/10.1002/macp.200290087
  5. G. Riess, Prog. Polym. Sci., 28, 1107, 1170 (2003) https://doi.org/10.1016/S0079-6700(03)00015-7
  6. P. L. Soo and A. Eisenberg, J. Polym. Sci., Polym. Phys., 42, 923 (2004)
  7. K. Ishizu, Polym. J., 36, 775 (2004) https://doi.org/10.1295/polymj.36.775
  8. K. Ishizu, K. Tsubaki, J. Satoh, and S. Uchida, Designed Monomers and Polymers, 5, 23 (2002)
  9. J. Pyun, T. Kowalewski, and K. Matyjaszewski, Macromol. Rapid Comm., 24, 1043 (2003) https://doi.org/10.1002/marc.200390020
  10. A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S. W. Ryu, and N. Haraguchi, Prog. Polym. Sci., 30, 111 (2005) https://doi.org/10.1016/j.progpolymsci.2004.12.002
  11. K. Ishizu, A. Mori, and T. Shibuya, Designed Monomers and Polymers, 5, 1 (2002)
  12. J. Bernard, M. Schappacher, A. Deffieux, P. Viville, R. Lazzaroni, M. T. CHarreyre, and M. Charles, Bioconjugate Chem., 17, 6 (2006) https://doi.org/10.1021/bc049708j
  13. J. Bernard, M. Schappacher, P. Viville, R. Lazzaroni, and A. Deffieux, Polymer, 46, 6767 (2005) https://doi.org/10.1016/j.polymer.2004.11.004
  14. M. Schappacher and A. Deffieux, Polymer, 45, 4633 (2004)
  15. A. Deffieux and M. Schappacher, Macromolecules, 32, 1797 (1999)
  16. M. Schappacher, C. Billaud, C. Paulo, and A. Deffieux, Macromol. Chem. Phys., 20, 2377 (1999)
  17. D. Lanson, M. Schappacher, A. Deffieux, and R. Borsali, Macromolecules, 39, 7107 (2006) https://doi.org/10.1021/ma0521147
  18. D. Lanson, Thesis in preparation, Bordeaux
  19. D. Lanson, M. Schappacher, A. Deffieux, and R. Borsali, to be submitted
  20. E. Minatti, P. Viville, R. Borsali, M. Schappacher, A. Deffieux, and R. Lazzaroni, Macromolecules, 36, 4125 (2003)