Synthesis of Host Polymers and Guests for Electrophosphorescence

  • Watkins Scott E. (School of Chemistry, Bio21 Institute, University of Melbourne) ;
  • Chan, Khai Leok (School of Chemistry, Bio21 Institute, University of Melbourne) ;
  • Cho, Sung-Yong (School of Chemistry, Bio21 Institute, University of Melbourne) ;
  • Evans Nicholas R. (Melville Laboratory, Department of Chemistry, Lensfield Road) ;
  • Grimsdale Andrew C. (School of Chemistry, Bio21 Institute, University of Melbourne) ;
  • Holmes Andrew B. (School of Chemistry, Bio21 Institute, University of Melbourne) ;
  • Mak Chris S.K. (Melville Laboratory, Department of Chemistry, Lensfield Road) ;
  • Sandee Albertus J. (Melville Laboratory, Department of Chemistry, Lensfield Road) ;
  • Williams Charlotte K. (Department of Chemistry, Imperial College, South Kensington)
  • 발행 : 2007.03.31

초록

Significant progress has been realized in the design and synthesis of light emitting polymers that emit over the entire visible spectrum. However, up to seventy-five percent of charge recombination events can lead to triplet states that decay non-radiatively. Following the pioneering work in the field of small molecule organic light emitting devices, it has been found that solution processible iridium polymer complexes can be used to harness the wasted triplet energy. In this paper, new results with respect to the electrophosphorescence of solution processible tethered iridium polymer derivatives are presented. Furthermore, our approaches to the design of new high triplet energy conjugated polymer hosts are also reported.

키워드

참고문헌

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990)
  2. A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed. Engl., 37, 402 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  3. C. Adachi, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001) https://doi.org/10.1063/1.1377023
  4. F. Shen, H. Xia, C. Zhang, D. Lin, X. Liu, and Y. Ma, Appl. Phys. Lett., 84, 55 (2004) https://doi.org/10.1063/1.1637949
  5. X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, M. S. Liu, and A. K.-Y. Jen, Adv. Mater., 15, 45 (2003)
  6. X. Zhang, C. Jiang, Y. Mo, Y. Xu, H. Shi, and Y. Cao, Appl. Phys. Lett., 88, 051116 (2006)
  7. A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies, C. E. Boothby, A. Köhler, R. H. Friend, and A. B. Holmes, J. Am. Chem. Soc., 126, 7041 (2004) https://doi.org/10.1021/ja037954k
  8. H. Zhen, C. Jiang, W. Yang, J. Jiang, F. Huang, and Y. Cao, Chem. Eur. J., 11, 5007 (2005) https://doi.org/10.1002/chem.200401090
  9. N. R. Evans, L. Sudha Devi, C. S. K. Mak, S. E. Watkins, S. I. Pascu, A. Kóhler, R. H. Friend, C. K. Williams, and A. B. Holmes, J. Am. Chem. Soc., 128, 6647 (2005)
  10. J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, and Y. Cao, Macromolecules, 38, 4072 (2005)
  11. D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K. Müllen, and H. Bässler, Adv. Mater., 13, 65 (2001)
  12. K. L. Chan, M. J. McKiernan, C. R. Towns, and A. B. Holmes, J. Am. Chem. Soc., 127, 7662 (2005)
  13. K. L. Chan, S. E. Watkins, C. S. K. Mak, M. J. McKiernan, C. Towns, S. I. Pascu, and A. B. Holmes, Chem. Commun., 5766 (2005)
  14. Y. Mo, R. Tian, W. Shi, and Y. Cao, Chem. Commun., 4925 (2005)
  15. A. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, J. Am. Chem. Soc., 126, 7718 (2004) https://doi.org/10.1021/ja037954k