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Abstract

In this paper, new results for perturbation bounds for unified decentralized systems by a unified approach using )

(defined as a shift operator at unified approach) are presented. Robust stability analysis of unified decentralized system is
investigated by new robust stability bound under system uncertainties. New unified stability bounds are developed based
on the unified Lyapunov matrix equation. It is shown that the system maintains its stability when new unified bounds are

applied. Numerical example is presented to illustrate the proposed analysis.
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I. INTRODUCTION

recent

In researchers  have

considerably explored the stability robustness of a

years, many
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system under perturbations. Since the differences
between mathematical models and real systems cause
poor system performance, it is important that robust
feedback be

considering system uncertainties. Thus, this problem,

control  systems must designed
e, feedback stabilization of uncertain systems has
been one of main topics in control theorym*m. In this
paper, design and analysis of robust feedback control
systems are presented using state-space approach for
continuous—time, discrete-time, and unified systems.
In [1}, robust stability bounds are presented for

uncertain continuous—time systems. In [4], Kolla et

‘al.presented the results for robust stability bounds of

discrete-time systems under perturbations. Now,
motivated by [1] and [4], the new robust stability
bounds for unified systems with system uncertainties

are derived. Also the output feedback control for
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unified systems is not informed yet while the state
feedback control for unified systems is reported
already™. In the literature, no research for this
unified bound problem is reported yet. And a research
for robustness of output feedback control is not
shown yet. ' '

II. MAIN RESULTS

In this section, a perturbation bound of unified
systems with system uncertainties is proposed. The
bound is developed using unified approach, Lyapunov
theory and singular value analysislet us consider a
linear dynamic system that has linear perturbations
as follows

p () = (4, + M) x(z) )
where 4, € R is an time-invariant asymptotically

nxn

stable matrix and M € R™" is a perturbation matrix.
To derive a perturbation bound, we assume that the
matrix M can be given in the following form

M= M, @)

i=1
where M, are constant matrices and +; are uncertai
mrmem. AISO we deﬁne Ri (3 man, P2 e mmnxmn ’ and

P, e R as the following form

P, =(A,P+PA +hAPA)/2, &)
P2 =
(M'PM) (M PM) (M'PM),
(M'PM)  (M'PM) (M'PM ) (4)
(M'PM) (MPM) (M:PMM )
B, = (4PM), ®)
_ (N+NT)

where (IV), and P is the solution of

2
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the unified Lyapunov equation

T T _
ATP+PA +hA P4, +Q, =0 6)

Inspired by the theorems presented in [1] and [4],
the following theorem is proposed:

Theorem 1: By manipulating the unified Lyapunov
function and using (2), we have

2 |rle. )+ lr[ 0. (B)
o | @
+2h |ylo. (B) <0, ()

Then, the unified system (1) is stable if
i) Continuous-time case: From (7), for continuous-

time, we set #=0. Then, we have

0. (Q,)
2

27 (R <
i=t
ii) Discrete-time case: From (7), we obtain

1
—0,.B)to (B)

7| < -2
mo_ (F)
. . ! 1/2 (9)
-0 (B)+o, (B) —0,(9,)
+ h + k
mo_ (P) mo_ (P)

Proof: Let V(x,7)=x"Px be a Lyapunov function
and the unified system is defined as

px(r)=A4,x(7) 10)

d/dt continuous — time
where & discrete - time
For the asymptotically stable nominal matrix A4, the

unified Lyapunov equation
A P+PA +hA, P4, +0=0 1D

gives the uniqulle symmetric solution' > 0 for any
given symmetric matrix @ > 0. Using [5, pp66],
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av
- (px) Px+x P(px) +h(px) P(px)
T

=(4,x) Px+x P(4,x)+h(A4x) P(4,x)
=x" (A4, P+PA +hd PA)x=x"(-Q)x  (12)

Now, consider the following linear unified system with
linear perturbations:

px(7)=(4, + M)x(1) (13)
Then,

@ _
dr
(4, + M)x]) Px+x"P[(4, + M)x]
+h[(4, + M)x] P[(4, + M)x]
=x'(4,+M) Px+x"P(4, +M)x

+hx' (4, + M) P(4, + M)x

=x'[AP+PA, +h4d, P4 + M P+PM

T T (14)
+h(4,PM +M' P4, + M' PM)]x
From (11), (14) can be rewritten as
dav —_
XM P+PM
dr (15)

+h(APM +M P4, +M'PM)-Qlx

Then, V(z) is a Lyapunov function and the system
(13) is stable if

M'P+PM + h(4, PM
] : (16)
+M'PA +M PM)-0<0
Equation (16) is satisfied if
0, [M P+ PM+h(A PM+M PA, -
17

+M' PM)) <o, (Q)

> ~:M;, we have (7).

i=1

Using (17), (3) - (6), and M=

From (7),

117)
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0> hzmllk,r o (P)

+23 k[l () +ho, (B)]-0,..(0)

=Y k[ o, (B)

(18)
_0,.(2)

h

Bam (P)+o_ (P, )}

Considering the two roots of the quadratic equation
formed with the equality in (18), we have (8 for

M=#0,0,(M)>0 The hound (8) is exactly same
as that derived by [1] due to the definition of unified
systems. This completes the proof.

1) System Description
Llet the system be a decentralized singularly
perturbed system given by

=4 + ) B u(r)
p x(7) = 4 x(r) Z u 1)

3 () =C,x(1)
which has the following form for singularly perturbed
unified systems

px(t)=A4, x(7)+ Aplzé’ 0+ Zk: B, u/(7)

& 2
pus(r)= A, x(0)+4,,8(7)+ ) B, u(7) 20

y(0)=C,x(0)+C,L(7)

where xe R” and § € R" are state vectors, % € X
B

is a control vector, and 4,, B,;, C,; are the constant

matrices of appropriate dimension. u is a small positive
parameter, 0 < p < 1. In this decentralized unified
system, Ay, is assumed to be a nonsingular matrix,
B,;=0, and C,;=0. Also, the
performance index with system (20) is given by [6]

associated

12 r
J, EL?[XT(T)Q,,“JC[(TH(,- (0)0,,4,(7)

(21)
+ul (DR u,(7)] dt
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where

O,
o

=0 o
0 szl.} § and Rpi _Rpi 20

2) Robustness of State Feedback Control

The singularly perturbed system in (20) can be
simplified as shown in [8]. the new
reduced-order model of each subsystem has the

Hence,

following form

Px(0)=A,x()+B, u,(T) )

ys,' (T) = CpOixsi (T) + Dpl)iusi (T)

where

Apm = Apll - AplZA;izApZI

BpOi = Bpli - AplZA/_:;TBpZi

-1
CpOi = Cpli - CpZiApZZApZI
Y
me = _CpZiApZZB;JZi

Also by applying p =0 to (21), the performance index
becomes the reduced LQ problem given by

,_ -;—S:[x;(r)mexﬁ(T)+Zx;(T)E u (1)

- PO si

(23)
+ u; (DR u

PO si

(0)] dr
where

T -1 \T -1
QpOi = Qpli + Apll (Ap22) QpZiApZZApZI

T -1 \T -1
EpOi = ApZI(ApZZ) QpZiApZIBpZi
T - -
RpOi = Rpi + BpZi(Aplz )T Qp_ZiAp;zBpZi

The preliminary feedback control for (22) and (23) is
given by

-RE" x

usi(T)= p0i~ p0i*Vsi

(D) +v,(7) (24)

to reduce (23) to standard format with no cross terms.
Applying (24) to (22), we have

p x,(0)=4,x (0)+B, v (r)

poiTi

(25)

and
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J = —1-.§’[x’ ®Q,,x,(D)+V (DR v ()] dr (26)
20

where
-1 T
ApOli = Ap()i - BpOiRpOEEpOi
1 T
onu =0 T EpOiRpOiEpOi

Then, the optimal feedback control for LQ problem is
given by [6]

u (r)=—(R,, +hB, KB )"

(Bl K(I+hd )+E x () (2D
=Gpoixn,(2')
where K, is a stabilizing solution of the

algebraic Riccati equation.

T T
0= APO,K,_ + K,AN + hAymK,Apm + me
T T T -1
-[B K(I+hd, )+E T (R, +hB KB )
[BLK(I+h4,)+ E,1

=(+hd, Y K(I+hd,)-K +hQ

poi

-HWB K(I+hd )+E T
(R, + hB:mK,Bpm y! [BZD,KI (I+hd, )+E,]
(28)

Using (27) into (22), we have the following stable
closed-loop system

pxsi (T) = (Ap()i + BpOiGpOi )xsi (1.) (29)
The objective here is to find the range of 7| that
allows the unified feedback system to be stable.

3) Robustness of Qutput Feedback Control

Now, we focus on the analysis of output feedback
system under perturbations. The design procedure for
the optimal output feedback control for continuous
and discrete-time systems -is presented by [11].
Motivated by [11], the optimal output feedback
control -for unified systems is developed by [7]. In [7],
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if the admissible control is given by

u(t)=-F,y,(7) (30)

By using (30) into (19), we have the closed-loop
system equation

x(t)=(4,~B,F,C,)x(1)= 4, x(r)

pei” i

(31)

Then, the cost function can be of the form

p

1 3
J ==8[x (DI, +C.F.R F.C x(t)dr ~ (32)
20

Now, the design problem is to choose the gain F,; so

that the cost i is minimized with respect to (31).
Then, the closed-loop Lyapunov equation is given by

T
hApci Si Apci + Qpi

+C'F'RFC =0
piopi

pic pis pi

¢i = S'A Ci + ATciSi +
T (33)

Notice that since, in many design problems, the initial
condition *(9) is not known, it is usual to use the

expected value of J; instead of Y. itself. Thus, the

cost can be rewritten as

E{J}= %E{x: (0)S x,(0)} = %rr(s,.sz,.) (34)

where @, € R™ g symmetric matrix and defined by
Q =E{x,(0) x (0)}.

In order to solve this problem, the Lagrange multiplier
approach is introduced as

H =m(SQ)+tr(pL) (35)
where L€ R™ 5 a symmetric matrix that should be
determined. Now, our constrained optimal control
problem becomes the simpler problem of minimizing

Lagrange multiplier H: with no constraints. Then, we
should solve the following coupled equations with
respect to 5;, L;, F,;. To solve this, we first set the
partial derivatives of H, equal to zero.

(119

oH ]
0 = e SiApcx' + Apcfo‘ + hA:ciSiApci
oL (36)
T T
+ Qpi + CpiF;Ji RpiF;?iCpi
3H. .
0 = _5; = ApciLi + LiA;ci + hApciApci + Qi (37)
1 oH .
0=——-=R FCLC,
2 0F, (3%
T T
~B.S,(I+h4,)LC,
where 4. =4,-B,F,C, Q =E {x, 0) x (0)}.

From (38), we have the optimal output feedback
gain

F, =R B S (I+hd

pi T piT i pei

YLCT(C LC'Y!

i pi P pi

(39)

In the literature, the procedure of obtaining the optimal
output feedback gain for unified systems is not
reported vet. Hence, this procedure and gain (81) are
new. Notice that by setting the sampling period #=0
the output feedback gain for continuous-time systems
is obtained.

Then, using the control law () ==F, (D) the

system (19) becomes the closed-loop system

A4 x (1)

x(t)=(4, -B FC)x(t)=4 x (40)

To analyze the stability of the output feedback
system, let the perturbed system be described by

px(t)=(4, +M)x(r) (41)
where
Y 0 0
0 7 0
A4, = Ap ‘BP,FP,C,, M= :
7,
0 0 7,

The focus here is to investigate the range of |7
such that the unified output feedback system
maintains its stability.
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I. EXAMPLE

Let the system be a decentralized singularly
perturhed system given by

px(T)=Ax(7)+ i B u(7)

i=1

(42)
y,(7)=C,x(r)

where

B C

HEAH

(1) Continuous-time case: By the definition of
the unified system, when A=0, system (42)
becomes system. Then, the
correspondingsystem matrices of the continuous-time

A

P

A continuous — time
» B,

A, discrete —time

a continuocus

case are given by [8]

1 0 -064 002 0
0 05 0345 ~1 0
A = s B,=| = )
200 524 265 0 81
500 200 0 -700 0
0
B, = , ¢.=[o o -14 o],

351
c,=[0 o o -12]

i) Robustness of State Feedback Control

The numerical results for state feedback control
are the same as those presented by [8]. Hence, those
results are omitted here,

ii) Robustness of Qutput Feedback Control

The numerical results for output feedback control
are the same as those presented in the previous
example for the continuous—time system. Hence,
those results are omitted here.

(2) Discrete-time case: By the definition of the

unified system, when 2=0.6, system (42) becomes
discrete-time case of the unified system. Then, the

BANAHY ZOIORYY B4
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corresponding system matrices of the discrete-time
case are obtained as

03990 0.8517 -0.0038 —0.0012
~03060 —0.9473 0.0017 —=0.0010
4= 21582  ~0.7943 -1.6730  0.0012
13875  0.8130 —0.0023 -1.6678
-0.1583 -0.1037
0.0763 -0.2895
s~ | 02408 | 04926
~0.0910 0.6795

Cé',i:l = [0 0 -14 0]9 C.s,,=2 = [0 0 0 _12]

i) Robustness of State Feedback Control
To investigate the robust stability of (42), the
subsystem is considered. The subsystem is given by

1.6460 - -0.3987
’ B.so.
0.1679

~0.0957
c, =[04121 -0.6652], D, =0.2015

80;

-0.0937
~1.6922

The system poles are obtained by

A, =-0.0947 +1.6689i
A, =—0.0947 - 1.6689:

The feedback control gain to stabilize the system
is obtained by

G,, =[-3.9538 -0.5695] (43)
Hence, we have the closed-loop system
-1.67 1419
Sx (k)= x, (k) (44)
-1.0283 0 ,

which has the following: system poles

A, =-0.8350 + 0.8729i
A, =—0.8350-0.8729{

To examine the robustness of the feedback control,

we set the control in (43) as follows

G,, =[-3.9538+y, —0.5695+7,]
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which yields the perturbed system of the form

8x (r)=(4

dc0i

+M)x (1) (45)

where 4sor is given in (34) and M is obtained by

~0.3987y, —0.3987,
= (46)
0.1679y7,  0.1679y,
Applying (9), the perturbation bounds are found
|7,/<1.0971 and |y,|<1.5270 (47)

Using (47) into (46), the perturbed system matrix is
obtained

—-0.4374
|

0.1842

~-0.6088
0.2564

Using (48) into full-order system, we obtain the
following eigenvalues

4 =0.8321
A, = 0.2987
A, =0.0104
A, = 0.0000

These eigenvalues show that the state feedback
system under perturbations is stable.

ii) Robustness of Output Feedback Control
- Applying output feedback control to stabilize the
system (42), the stable system matrix is obtained as

~0.0119 - -0.0413 -0.0069 -0.0157
0.0393  -0.0005 -0.2250 0.4141

4, = (49)
-0.0356  0.0012 -0.6340  0.2652
-0.1317 -1.0572

0.1128.  -0.0020

The range of _7f should be assigned to hold
stability of the system as follows

7| < 0.0682 |y,| < 0.0695
|7,] < 0.0745 |y,| < 0.0746

Applying these perturbations to the matrix (49), we
have ’

(121

0.0563 -0.0413 -0.0069 -—0.0157
0.0393 0.0690 02250 0.4141
A= -0.0356 0.0012 —-0.5594 0.2652
0.1128  -0.0020 -0.1317 -0.9826

and its eigenvalues are given by

A =-0.8715
A, =-0.6693
2, = 0.0621+0.0596i
A, =0.0621-0.0596i

It is shown that the investigated range of perturbations
the stability of the
perturbations. These perturbation bounds are not in

maintains system under
explicit range, but can keep the system stability as
long as the perturbations are inside this range.

IV. CONCLUSION

In this paper, investigation of stability robustness
of unified systems is mainly discussed. The goal of
this paper is to keep stability of the system with the
stabilizing controller when perturbations are added to
the closed-loop system. The perturbation bounds are
obtained based on the solutions of the unified
Lyapunov matrix equation (6). Numerical results are
presented by an example. From the example, it is
shown that the system stability is still maintained
even if perturbations are applied within the obtained
range,
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