Comparative Transcriptome Analysis for Avermectin Overproduction via Streptomyces avermitilis Microarray System

  • Im, Jong-Hyuk (Department of Biological Engineering, Inha University) ;
  • Kim, Myung-Gun (Department of Biological Engineering, Inha University) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • 발행 : 2007.03.31

초록

Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. To increase our understanding about the genetic mechanism underlying avermectin overproduction, comparative transcriptomes were analyzed between the low producer S. avermitilis ATCC31267 and the high producer S. avermitilis ATCC31780 via a S. avermitilis whole genome chip. The comparative transcriptome analysis revealed that fifty S. avermitilis genes were expressed at least two-fold higher in S. avermitilis ATCC31780. In particular, all the avermectin biosynthetic genes, including polyketide synthase (PKS) genes and an avermectin pathway-specific regulatory gene, were less expressed in the low producer S. avermitilis ATCC31267. The present results imply that avermectin overproduction in S. avermitilis ATCC31780 could be attributed to the previously unidentified fifty genes reported here and increased transcription levels of avermectin PKS genes.

키워드

참고문헌

  1. Albers-Schonberg G., B. H. Arison, J. C. Chabala, A. W. Douglas, P. Eskola, M. H. Fisher, A. Lusi, H. Mrozik, J. L. Smith, and R. L. Tolman. 1981. Avermectins. Structure determination. J. Am. Chem. Soc. 103: 4216-4221 https://doi.org/10.1021/ja00404a040
  2. Burg, R. W., B. M. Miller, E. E. Baker, J. Birnbaum, S. Currie, R. Hartman, Y. L. Kong, R. L. Monaghan, R. Oiwa, and S. Omura. 1979. Avermectins, new family of potent anthelmintic agents; producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367 https://doi.org/10.1128/AAC.15.3.361
  3. Hillerich, B. and J. Westpheling. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188: 7477-7487 https://doi.org/10.1128/JB.00898-06
  4. Huang, J., C. J. Lin, K. H. Pan, and S. N. Cohen. 2001. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathway in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15: 3183-3192 https://doi.org/10.1101/gad.943401
  5. Hwang, E. I., B. S. Yun, W. H. Yeo, S. H. Lee, J. S. Moon, Y. K. Kim, S. J. Lim, and S. U. Kim. 2005. Compound IKD- 8344, a selective growth inhibitor against the mycelial form of Candida albicans, isolated from Streptomyces sp. A6792. J. Microbiol. Biotechnol. 15: 909-912
  6. Hwang, Y. S., E.-S. Kim, S. Biro, and C. Y. Choi. 2003. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl. Environ. Microbiol. 69: 1263-1269 https://doi.org/10.1128/AEM.69.2.1263-1269.2003
  7. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 505-506 https://doi.org/10.1038/nbt0503-505
  8. Ikeda, H., H. Kotaki, and S. Omura. 1987. Genetic studies of avermectin biosynthesis in Streptomyces avermitilis. J. Bacteriol. 169: 5615-5621 https://doi.org/10.1128/jb.169.12.5615-5621.1987
  9. Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96: 9509-9514
  10. Ikeda, H. and S. Omura. 1998. Avermectin biosynthesis. Chem. Rev. 97: 2591-2609 https://doi.org/10.1021/cr960023p
  11. Lee, J. Y., Y. S. Hwang, S. S. Kim, E.-S. Kim, and C. Y. Choi. 2000. Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J. Biosci. Bioeng. 89: 606-608 https://doi.org/10.1016/S1389-1723(00)80065-1
  12. Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao. 2003. Reverse engineering of industrial pharmaceuticalproducing actinomycete strains using DNA microarrays. Metabol. Eng. 6: 186-196
  13. Miller T. W., L. Chaiet, D. J. Cole, L. J. Cole, J. E. Flor, R. T. Goegelman, V. P. Gullo, H. Joshua, A. J. Kempf, W. R. Krellwitz, R. L. Monaghan, R. E. Ormond, K. E. Wilson, G. Albers-Schonberg, and I. Putter. 1979. Avermectins, new family of potent anthelmintic agents: Isolation and chromatographic properties. Antimicrob. Agents Chemother. 15: 368-371 https://doi.org/10.1128/AAC.15.3.368
  14. Omura S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98: 12215-12220
  15. Park, H.-S., S.-H. Kang, H.-J. Park, and E.-S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71
  16. Park, N. S., H.-J. Park, K. Han, and E.-S. Kim. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 16: 295-298
  17. Prasad, J. B., S. K. Lim, I. D. Yoo, J. C. Yoo, J. K. Sohng, and D. H. Nam. 2006. Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC 0041BP. J. Microbiol. Biotechnol. 16: 764-770
  18. Yoon, Y. J., E.-S. Kim, Y. S. Hwang, and C. Y. Choi. 2004. Avermectin: Biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63: 626-634 https://doi.org/10.1007/s00253-003-1491-4