Rapid Detection and Isolation of Known and Putative $\alpha-L-Arabinofuranosidase$ Genes Using Degenerate PCR Primers

  • Park, Jung-Mi (Department of Food Science and Technology, School of Applied Life Science and Environment, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, School of Applied Life Science and Environment, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, School of Applied Life Science and Environment, Chungbuk National University)
  • Published : 2007.03.31

Abstract

[ $\alpha$ ]-L-Arabinofuranosidases (AFases; EC 3.2.1.55) are exo-type enzymes, which hydrolyze terminal nonreducing arabinose residues from various polysaccharides such as arabinan and arabinoxylan. Genome-wide BLAST search showed that various bacterial strains possess the putative AFase genes with well-conserved motif sequences at the nucleotide and amino acid sequence levels. In this study, two sets of degenerate PCR primers were designed and tested to detect putative AFase genes, based on their three highly conserved amino acid blocks (PGGNFV, GNEMDG; and DEWNVW). Among 20 Bacillus-associated species, 13 species were revealed to have putative AFase genes in their genome and they share over 67% of amino acid identities with each other. Based on the partial sequence obtained from an isolate, an AFase from Geobacillus sp. was cloned and expressed in E. coli. Enzymatic characterization has verified that the resulting enzyme corresponds to a typical AFase. Accordingly, degenerate PCR primers developed in this work can be used for fast, easy, and specific detection and isolation of putative AFase genes from bacterial cells.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Beylot, M. H., V. A. McKie, A. G. Voragen, C. H. Doeswijk- Voragen, and H. J. Gilbert. 2001. The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem. J. 358: 607- 614 https://doi.org/10.1042/0264-6021:3580607
  3. Degrassi, G., A. Vindigni, and V. Venturi. 2003. A thermostable $\alpha$-arabinofuranosidase from xylanolytic Bacillus pumilus: Purification and characterisation. J. Biotechnol. 101: 69-79 https://doi.org/10.1016/S0168-1656(02)00304-8
  4. Gilead, S. and Y. Shoham. 1995. Purification and characterization of $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174
  5. Henrissat, B. and G. Davis. 1997. Structural and sequencebased classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644 https://doi.org/10.1016/S0959-440X(97)80072-3
  6. Hovel, K., D. Shallom, K. Niefind, V. Belakhov, G. Shoham, T. Baasov, Y. Shoham, and D. Schomburg. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 $\alpha$-L-arabinofuranosidase. EMBO J. 22: 4922-4932 https://doi.org/10.1093/emboj/cdg494
  7. Jung, S. J., H. J. Kim, and H. Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353- 1358
  8. Kaneko, S., M. Sano, and I. Kusakabe. 1994. Purification and some properties of $\alpha$-L-arabinofuranosidase from Bacillus subtilis 3-6. Appl. Environ. Microbiol. 60: 3425- 3428
  9. Kim, K. J., K. N. Kim, and Y. J. Choi. 2004. Characterization of the arfA gene from Bacillus stearothermophilus no. 236 and its protein product, $\alpha$-L-arabinofuranosidase. J. Microbiol. Biotechnol. 14: 474-482
  10. Kim, S. B., H. J. Lim, W. K. Lee, I. G. Hwang, G. J. Woo, and S. Ryu. 2006. PCR-based detection and molecular genotyping of enterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16: 291-294
  11. Kunihiro, S., Y. Kawanishi, M. Sano, K. Naito, Y. Matsuura, Y. Tateno, T. Gojobori, Y. Yamagata, K. Abe, and M. Machida. 2002. A polymerase chain reaction-based method for cloning novel members of a gene family using a combination of degenerate and inhibitory primers. Gene 289: 177-184 https://doi.org/10.1016/S0378-1119(02)00547-4
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Linhart, C. and R. Shamir. 2002. The degenerate primer design problem. Bioinformatics 18: 172-181
  14. Manin, C., F. Shareek, R. Morosoli, and D. Kluepfel. 1994. Purification and characterization of an $\alpha$-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Biochem. J. 302: 443-449 https://doi.org/10.1042/bj3020443
  15. Margolles, A. and C. G. De Los Reyes-Gavilan. 2003. Purification and functional characterization of a novel $\alpha$-L-Larabinofuranosidase from Bifidobacterium longum B667. Appl. Environ. Microbiol. 69: 5096-5103 https://doi.org/10.1128/AEM.69.9.5096-5103.2003
  16. Martins, M. L., E. F. de Araujo, H. C. Mantovani, C. A. Moraes, and M. C. Vanetti. 2005. Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk. Int. J. Food Microbiol. 102: 203-211 https://doi.org/10.1016/j.ijfoodmicro.2004.12.016
  17. Park, J. H., H. K. Park, B. C. Kang, E. S. Song, H. J. Jang, and C. M. Kim. 2006. Development of genus- and speciesspecific probe design system for pathogen detection based on 23S rDNA. J. Microbiol. Biotechnol. 16: 740-747
  18. Park, K. S., Y. J. Bae, E. J. Jung, and S. J. Kang. 2005. RTPCR- based detection of six garlic viruses and their phylogenetic relationships. J. Microbiol. Biotechnol. 15: 1110-1114
  19. Park, S. H., H. J. Kim, and H. Y. Kim. 2006. Simultaneous detection of Yersinia enterocolitica, Staphylococcus aureus, and Shigella spp. in lettuce using multiplex PCR method. J. Microbiol. Biotechnol. 16: 1301-1305
  20. Pitson, S. M., A. G. Voragen, and G. Beldman. 1996. Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. FEBS Lett. 398: 7-11 https://doi.org/10.1016/S0014-5793(96)01153-2
  21. Regeard, C., J. Maillard, and C. Holliger. 2004. Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J. Microbiol. Methods 56: 107-118 https://doi.org/10.1016/j.mimet.2003.09.019
  22. Renner, M. J. and J. A. Breznak. 1998. Purification and properties of ArfI, an $\alpha$-L-arabinofuranosidase from Cytophaga xylanolytica. Appl. Environ. Microbiol. 64: 43-52
  23. Saha, B. C. 2000. Alpha-L-arabinofuranosidases: Biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423 https://doi.org/10.1016/S0734-9750(00)00044-6
  24. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, pp. 116-118. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  25. Seri, K., K. Sanai, N. Matsuo, K. Kawakubo, C. Xue, and S. Inoue. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374 https://doi.org/10.1016/S0026-0495(96)90117-1
  26. Shallom, D., V. Belakhov, D. Solomon, G. Shoham, T. Baasov, and Y. Shoham. 2002. Detailed kinetic analysis and identification of the nucleophile in $\alpha$-L-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. J. Biol. Chem. 277: 43667-43673 https://doi.org/10.1074/jbc.M208285200
  27. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  28. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  29. Vakari, L., M. Tenkanen, J. Buchert, M. Ratto, M. Bailey, M. Siika-aho, and M. Linko. 1993. Hemicellulases for industrial applications, pp. 131-82. In J. N. Saddler (ed.), Bioconversion of Forest and Agricultural Plant Residues. CAB International, Oxford
  30. Wilfinger, W. W., K. Mackey, and P. Chomczynski. 1997. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22: 474- 481
  31. Yoon, H. S., C. H. Kim, T. J. Kim, I. K. Keum, and N. S. Han. 2003. Novel functional sugar L-arabinose: Its functionality, uses and production methods. Kor. J. Food Sci. Technol. 35: 757-763
  32. Yoon, H. S., I. K. Keum, N. S. Han, and C. H. Kim. 2004. Molecular cloning and characterization of a gene encoding $\alpha$-L-arabinofuranosidase from Thermotoga maritima. Food Sci. Biotechnol. 13: 244-247
  33. Zeikus, J. G., C. Lee, Y. E. Lee, and B. C. Saha. 1991. Thermostable saccharidases: New sources, uses, and biodesign, pp. 36-51. In G. F. Leatham and M. E. Himmel (eds.), Enzymes in Biomass Conversion. American Chemical Society, Washington, D.C
  34. Zverlov, V. V., W. Liebl, M. Bachleitner, and W. H. Schwarz. 1998. Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of $\alpha$-L-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol. Lett. 164: 337-343