Gene Cloning, Expression, and Functional Characterization of an Ornithine Decarboxylase Protein from Serratia liquefaciens IFI65

  • De Las Rivas Blanca (Departamento de Microbiologia, Instituto de Fermentaciones Industriales, CSIC) ;
  • Carrascosa Alfonso V. (Departamento de Microbiologia, Instituto de Fermentaciones Industriales, CSIC) ;
  • Munoz Rosario (Departamento de Microbiologia, Instituto de Fermentaciones Industriales, CSIC)
  • Published : 2007.03.31

Abstract

Putrescine has a negative effect on health and is also used as an indicator of quality on meat products. We investigated the genes involved in putrescine production by Serratia liquefaciens IFI65 isolated from a spoiled Spanish dry-cured ham. We report here the genetic organization of its ornithine decarboxylase encoding region. The 5,506-bp DNA region showed the presence of three complete and two partial open reading frames. Putative functions have been assigned to several gene products by sequence comparison with proteins included in the databases. The second gene putatively coded for an ornithine decarboxylase. The functionality of this decarboxylase has been experimentally demonstrated by complementation to an E. coli defective mutant. Based on sequence comparisons of some enterobacterial ornithine decarboxylase regions, we have elaborated a hypothetical pathway for the acquisition of putrescine biosynthetic genes in some Enterobacteriaceae strains.

Keywords

References

  1. Brenner, D. J. 1984. In N. R. Krieg and J. C. Holt (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. Family 1. Enterobacteriaceae, pp. 408-516. The Williams and Wilkins Co., Baltimore
  2. Cantoni, C., P. Cattaneo, and O. Brenna. 1987. Una nuova alterazione dei prosciutto crudo stagionato. Ind. Alimentari. 26: 1158-1160
  3. Cordoba, J. J., T. Antequera, C. Garcia, J. Ventanas, C. Lopez, and M. A. Asensio. 1994. Evolution of free amino acids and amines during ripening of Iberian cured ham. J. Agric. Food Chem. 42: 2296-2301 https://doi.org/10.1021/jf00046a040
  4. De las Rivas, B., A. Marcobal, and R. Munoz. 2005. Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol. Lett. 244: 367-372 https://doi.org/10.1016/j.femsle.2005.02.012
  5. Garcia-Moruno, E., A. V. Carrascosa, and R. Munoz. 2005. A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J. Food Prot. 68: 625-629 https://doi.org/10.4315/0362-028X-68.3.625
  6. ICMSF. 1996. Micro-organisms in Foods V. Microbiological Specifications of Food Pathogens. Blackie Academic and Professional, London
  7. Igarashi, K. and K. Kashiwagi. 1999. Polyamine transport in bacteria and yeast. Biochem. J. 344: 633-642 https://doi.org/10.1042/0264-6021:3440633
  8. Inouye, S. and M. Inouye. 1985. Up-promoter mutations in the lpp gene of Escherichia coli. Nucl. Acids Res. 13: 3101- 3110 https://doi.org/10.1093/nar/13.9.3101
  9. Kashiwagi, K., F. Suzuki, T. Furuchi, H. Kobayashi, and K. Igarashi. 1991. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J. Biol. Chem. 266: 20922- 20927
  10. Losantos, A., C. Sanabria, I. Cornejo, and A.,V. Carrascosa. 2000. Characterization of Enterobacteriaceae strains isolated from spoiled dry-cured hams. Food Microbiol. 17: 505-512 https://doi.org/10.1006/fmic.2000.0350
  11. Marin, M. E., A. V. Carrascosa, and I. Cornejo. 1996. Characterization of Enterobacteriaceae strains isolated during industrial processing of dry-cured hams. Food Microbiol. 13: 375-381 https://doi.org/10.1006/fmic.1996.0043
  12. Munoz, R., R. Lopez, M. de Frutos, and E. Garcia. 1999. First molecular characterization of a uridine diphosphate galacturonate 4-epimerase, an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Mol. Microbiol. 31: 703-713 https://doi.org/10.1046/j.1365-2958.1999.01211.x
  13. Ruiz-Capillas, C. and F. Jimenez-Colmenero. 2004. Biogenic amines in meat and meat products. Crit. Rev. Food Sci. Nutr. 44: 489-499 https://doi.org/10.1080/10408690490489341
  14. Silla, M. H. 1998. Amino acid decarboxylase capability of microorganisms isolated in Spanish fermented meat products. Int. J. Food Microbiol. 39: 227-230 https://doi.org/10.1016/S0168-1605(97)00129-3
  15. Stiles, M. E. 1981. Enterobacteriacea associated with meats and meat handling. Appl. Environ. Microbiol. 41: 867-872
  16. Tabor, H., C. White, M. S. Cohn, and E. W. Hafner. 1981. Streptomycin resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine[$\Delta$(speA-speB) $\Delta$speC]. J. Bacteriol. 147: 702-704
  17. Troeger, K. and W. Woltersdorf. 1986. Influence of scalding and dehairing during pig slaughtering and meat quality. Fleicchwirtsch 66: 893-897
  18. Wathersen, J. J., R. A. Scanlan, D. D. Bills, and L. M. Libbey. 1975. Formation of heterocyclic N-nitrosamines from the reaction of nitrite and selected primary diamines and amino acids. J. Agric. Food Chem. 23: 898-902 https://doi.org/10.1021/jf60201a004