Oxygenase-Based Whole-Cell Biocatalysis in Organic Synthesis

  • Park, Jin-Byung (Department of Food Science & Technology, College of Engineering, Ewha Womans University)
  • Published : 2007.03.31

Abstract

Keywords

References

  1. Adam, W., M. Lazarus, C. R. SahaMoller, O. Weichold, U. Hoch, D. Haring, and P. Schreier. 1999. Biotransformations with peroxides. Adv. Biochem. Eng. Biotechnol. 63: 73-108 https://doi.org/10.1271/bbb.63.73
  2. Amanullah, A., C. J. Hewitt, A. W. Nienow, C. Lee, M. Chartrain, B. C. Buckland, S. W. Drew, and J. M. Woodley. 2002. Fed-batch bioconversion of indene to cis-indandiol. Enz. Microb. Technol. 31: 954-967 https://doi.org/10.1016/S0141-0229(02)00183-7
  3. Andersson, L. A. and L. A. Dawson. 1991. EXAFS spectroscopy of heme-containing oxygenases and peroxidases. Struct. Bonding 64: 1-40
  4. Atkinson, B. and F. Mavituna. 1991. Biochemical Engineering and Biotechnology Handbook, 2nd Ed. Stockton Press, New York
  5. Axe, D. D. and J. E. Bailey. 1995. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 47: 8-19 https://doi.org/10.1002/bit.260470103
  6. Bachmann, R., E. Bastianelli, J. Riese, and W. Schlenzka. 2000. Using plants as plants. McKinsey Quarterly 93-99
  7. Baldascini, H., K. J. Ganzeveld, D. B. Janssen, and A. A. C. M. Beenackers. 2001. Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquidphase system. Biotechnol. Bioeng. 73: 44-54 https://doi.org/10.1002/1097-0290(20010405)73:1<44::AID-BIT1035>3.0.CO;2-C
  8. Banerjee, S., A. E. Dombrowski, and A. J. Scala. 1983. Regiochemistry of camphor analog oxidation by Pseudomonas putida. Appl. Environ. Microb. 45: 1405-1407
  9. Bernasconi, S., F. Orsini, G. Sello, A. Colmegna, E. Galli, and G. Bestetti. 2000. Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedr. Lett. 41: 9157-9161 https://doi.org/10.1016/S0040-4039(00)01639-7
  10. Bosetti, A., J. B. van Beilen, H. Preusting, R. G. Lageveen, and B. Witholt. 1992. Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enz. Microb. Technol. 14: 702-708 https://doi.org/10.1016/0141-0229(92)90109-2
  11. Brass, J. M., F. W. J. M. M. Hoeks, and M. Rohner. 1997. Application of modeling techniques for the improvement of industrial bioprocesses. J. Biotechnol. 59: 63-72 https://doi.org/10.1016/S0168-1656(97)00165-X
  12. Brink, L. E. S. and J. Tramper. 1987. Production of propene oxide in an organic liquid-phase immobilized cell reactor. Enz. Microb. Technol. 9: 612-618 https://doi.org/10.1016/0141-0229(87)90115-3
  13. Buhler, B., I. Bollhalder, B. Hauer, B. Witholt, and A. Schmid. 2003. Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons at a technical scale. Biotechnol. Bioeng. 82: 833-842 https://doi.org/10.1002/bit.10637
  14. Buhler, B. and A. Schmid. 2004. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J. Biotechnol. 113: 183-210 https://doi.org/10.1016/j.jbiotec.2004.03.027
  15. Buhler, B., A. Schmid, B. Hauer, and B. Witholt. 2000. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J. Biol. Chem. 275: 10085-10092 https://doi.org/10.1074/jbc.275.14.10085
  16. Buhler, B., B. Witholt, B. Hauer, and A. Schmid. 2002. Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl. Environ. Microb. 68: 560- 568 https://doi.org/10.1128/AEM.68.2.560-568.2002
  17. Calhoun, M. W., K. L. Oden, R. B. Gennis, M. J. Teixeira de Mattos, and O. M. Neijssel. 1993. Energetic efficiency of Escherichia coli: Effect of mutations in components of the aerobic respiratory chain. J. Bacteriol. 175: 3020- 3025 https://doi.org/10.1128/jb.175.10.3020-3025.1993
  18. Ceen, E. G., P. Dunnill, and J. P. R. Herrmann. 1988. Two-liquid phase reactor studies of 11a-hydroxylation of progesterone by Aspergillus ochraeus. Biotechnol. Bioeng. 31: 743-746 https://doi.org/10.1002/bit.260310718
  19. Chang, D.-E., D. J. Smalley, and T. Conway. 2002. Gene expression profiling of Escherichia coli growth transitions: An expanded stringent response model. Mol. Microb. 45: 289-306 https://doi.org/10.1046/j.1365-2958.2002.03001.x
  20. Charles, M. and J. Wilson. 1994. Bioprocess Engineering: Systems Equipment and Facilities. John Wiley & Sons, New York
  21. Choi, J.-H., T.-K. Kim, Y.-M. Kim, W.-C. Kim, K. Park, and I.-K. Rhee. 2006. Cloning and characterization of a gene cluster for cyclohexanone oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 16: 511-518
  22. Davis, H. G. 1989. Biotransformations in Preparative Organic Chemistry. Academic Press, London, U.K
  23. de Bont, J. A. M., C. G. van Ginkel, J. Tramper, and K. C. A. M. Luyben. 1983. Ethylene oxide production by immobilized Mycobacterium Py1 in a gas-solid bioreactor. de Bont, J. A. M., C. G. van Ginkel, J. Tramper, and K. C. A. M. Luyben. 1983. Ethylene oxide production by immobilized Mycobacterium Py1 in a gas-solid bioreactor. Enz. Microb. Technol. 5: 55-59 https://doi.org/10.1016/0141-0229(83)90065-0
  24. de Carvalho, C. C. C. R. and M. M. R. da Fonseca. 2002. Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J. Mol. Cat. B Enz. 19-20: 377-387
  25. de Smet, M. J., J. Kingma, H. Wynberg, and B. Witholt. 1981. Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two liquid phase system containing high concentrations of 1-octene. Appl. Environ. Microb. 42: 811-816
  26. Doig, S. D., P. J. Avenell, P. A. Bird, P. Gallati, K. S. Lander, G. J. Lye, R. Wohlgemuth, and J. M. Woodley. 2002. Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol. Bioeng. 18: 1039- 1046
  27. Doig, S. D., A. T. Boam, A. G. Livingstone, and D. C. Stuckey. 1999. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans in a membrane bioreactor. Biotechnol. Bioeng. 63: 601-611 https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<601::AID-BIT10>3.0.CO;2-J
  28. Duetz, W. A., A. H. M. Fjallman, S. Y. Ren, C. Jourdat, and B. Witholt. 2001. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl. Environ. Microb. 67: 2829-2832 https://doi.org/10.1128/AEM.67.6.2829-2832.2001
  29. Duetz, W. A., J. B. van Beilen, and B. Witholt. 2001. Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425 https://doi.org/10.1016/S0958-1669(00)00237-8
  30. Emmerling, M., M. Dauner, A. Ponti, J. Fianux, M. Hochuli, T. Szyperski, K. Wuthrich, J. E. Bailey, and U. Sauer. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152-164 https://doi.org/10.1128/JB.184.1.152-164.2002
  31. Favre-Bulle, O., E. Weenink, T. Vos, H. Preusting, and B. Witholt. 1993. Continuous bioconversion of n-octane to octanoic acid by recombinant Escherichia coli ($alk^{+}$) growing in a two-liquid-phase chemostat. Biotechnol. Bioeng. 41: 263-272 https://doi.org/10.1002/bit.260410213
  32. Favre-Bulle, O. and B. Witholt. 1992. Biooxidation of noctane by a recombinant Escherichia coli in a two-liquidphase system: Effect of medium components on cell growth and alkane oxidation activity. Enz. Microb. Technol. 14: 931-937 https://doi.org/10.1016/0141-0229(92)90058-V
  33. Fruetel, J. A., J. R. Collins, D. L. Camper, G. H. Loew, and P. R. Ortiz de Montellano. 1992. Calculated and experimental absolute stereochemistry of the styrene and $\beta$-methylstyrene epoxides formed by cytochrome P450cam. J. Am. Chem. Soc. 114: 6987-6993 https://doi.org/10.1021/ja00044a006
  34. Fu, H., M. Newcomb, and C.-H. Wong. 1991. Pseudomonas oleovorans monooxygenase catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring opening rate exceeding the oxygen rebound rate. J. Am. Chem. Soc. 113: 5878-5880 https://doi.org/10.1021/ja00015a061
  35. Fu, H., G.-J. Shen, and C.-H. Wong. 1991. Asymmetric epoxidation of allyl alcohol derivatives by w-hydroxylase from Pseudomonas oleovorans. Recueil des Travaux Chimiques des Pays-Bas 110: 167-170 https://doi.org/10.1002/recl.19911100506
  36. Furuhashi, K. 1986. A fermentation process for the production of optically active epoxides. Chem. Econ. Eng. Rev. 18: 21-26
  37. Furuhashi, K. and M. Takagi. 1984. Optimization of a medium for the production of 1,2-epoxytetradecane by Nocardia corallina B-276. Appl. Microbiol. Biotechnol. 20: 6-9
  38. Galkin, A., L. Kulakova, T. Yoshimura, K. Soda, and N. Esaki. 1997. Synthesis of optically active amino acids from keto acids with Escherichia coli cells expressing heterologous genes. Appl. Environ. Microb. 63: 4651-4656
  39. Glieder, A., E. T. Farinas, and F. H. Arnold. 2002. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135-1139 https://doi.org/10.1038/nbt744
  40. Goswami, P. and H. D. Singh. 1991. Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol. Bioeng. 37: 1-11 https://doi.org/10.1002/bit.260370103
  41. Griffiths, M. 2001. The Application of Biotechnology to Industrial Sustainability. OECD, Paris
  42. Groger, H., O. May, H. Werner, A. Menzel, and J. Altenbuchner. 2006. A “Second-Generation process” for the synthesis of L-neopentylglycine: Asymmetric reductive amination using a recombinant whole cell catalyst. Org. Proc. Res. Dev. 10: 666-669
  43. Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S. G. Lee, and S. H. Park. 2006. Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enz. Microb. Technol. 39: 1264- 1269 https://doi.org/10.1016/j.enzmictec.2006.03.002
  44. Haring, H. G., F. Rijkens, and H. Boelens. 1972. Olfactory studies on enantiomeric eremophilane. J. Agric. Food Chem. 20: 1018 https://doi.org/10.1021/jf60183a011
  45. Harrop, A. J., J. M. Woodley, and M. D. Lilly. 1992. Production of naphthalene-cis-glycol by Pseudomonas putida in the presence of organic solvents. Enz. Microb. Technol. 14: 725-730 https://doi.org/10.1016/0141-0229(92)90112-2
  46. Hartmans, S., J. A. M. de Bont, and W. Harder. 1989. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microb. Rev. 63: 235-264 https://doi.org/10.1016/0168-6445(89)90034-X
  47. Hartmans, S., M. J. van der Werf, and J. A. M. de Bont. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microb. 56: 1347-1351
  48. Held, M., A. Schmid, H. P. E. Kohler, W. Suske, B. Witholt, and M. G Wubbolts. 1999. An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. Biotechnol. Bioeng. 62: 641-648 https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<641::AID-BIT3>3.0.CO;2-H
  49. Held, M., W. Suske, A. Schmid, K.-H. Engesser, H.-P. E. Kohler, B. Witholt, and M. G. Wubbolts. 1998. Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP1. J. Mol. Cat. B Enz. 5: 87-93 https://doi.org/10.1016/S1381-1177(98)00012-5
  50. Hou, C. T. 1984. Propylene oxide production from propylene by immobilized whole cells of Methylosinus sp. CRL 31 in a gas-solid bioreactor. Appl. Microbiol. Biotechnol. 19: 1-4
  51. Hlisken, L. E., R. Beeftink, J. A. M. de Bont, and J. Wery. 2001. High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl. Microbiol. Biotechnol. 55: 571-577 https://doi.org/10.1007/s002530000566
  52. Husken, L. E., M. C. F. Dalm, J. Wery, J. Tramper, J. A. M. de Bont, and R. Beeftink. 2001. Integrated bioproduction and extraction of 3-methylcatechol. J. Biotechnol. 88: 11- 19 https://doi.org/10.1016/S0168-1656(01)00252-8
  53. Husken, L. E., J. A. M. de Bont, R. Beeftink, J. Tramper, and J. Wery. 2002. Optimization of microbial 3-methylcatechol production as affected by culture conditions. Biocat. Biotransf. 20: 57-61 https://doi.org/10.1080/10242420210152
  54. Husken, L. E., M. Oomes, K. Schroen, J. Tramper, J. A. M. de Bont, and R. Beeftink. 2002. Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water twophase system. J. Biotechnol. 96: 281-289 https://doi.org/10.1016/S0168-1656(02)00045-7
  55. Inoue, A. and K. Horikoshi. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264-266 https://doi.org/10.1038/338264a0
  56. Isken, S., A. Derks, P. F. G. Wolffs, and J. A. M. de Bont. 1999. Effect of organic solvents on the yield of solventtolerant Pseudomonas putida S12. Appl. Environ. Microb. 65: 2631-2635
  57. Kaup, B., S. Bringer-Meyer, and H. Sahm. 2004. Metabolic engineering of Escherichia coli: Construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl. Microbiol. Biotechnol. 64: 333- 339 https://doi.org/10.1007/s00253-003-1470-9
  58. Karp, P. D., M. Riley, M. Saier, I. T. Paulsen, J. Collado- Vides, S. M. Paley, A. Pellegrini-Toole, C. Bonavides, and S. Gama-Castro. 2002. The EcoCyc database. Nucleic Acids Res. 30: 56-58 https://doi.org/10.1093/nar/30.1.56
  59. Kawakami, K., S. Tsuruda, and K. Miyagi. 1990. Immobilization of microbial cells in a mixed matrix of silicone polymer and calcium alginate gel: Epoxidation of 1- octene by Nocardia corallina B-276 in organic media. Biotechnol. Prog. 6: 357-361 https://doi.org/10.1021/bp00005a007
  60. Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomoans putida S12 solvent tolerance. J. Biol. Chem. 273: 85-91 https://doi.org/10.1074/jbc.273.1.85
  61. Kiener, A. 1995. Biosynthesis of functionalized aromatic Nheterocycles. Chemtech September 31-35
  62. Klinman, J. P., K. M. Welsh, and R. Hogue-Angeletti. 1977. Epoxide inhibition of alcohol dehydrogenases. Identification of modified cysteines in yeast alcohol dehydrogenase and demonstration of reversible and irreversible inhibition of liver alcohol dehydrogenase by styrene oxide. Biochemistry 16: 5521-5527 https://doi.org/10.1021/bi00644a020
  63. Kok, M., R. Oldenhuis, M. P. G. van der Linden, P. Raatjes, J. Kingma, P. H. van Lelyveld, and B. Witholt. 1989. The Pseudomonas oleovorans alkane hydroxylase gene: Sequence and expression. J. Biol. Chem. 264: 5435-5441
  64. Koskinen, M., D. Calebiro, and K. Hemminki. 2000. Styrene oxide-induced 2'-deoxycytidine adducts: Implications for the mutagenicity of styrene oxide. Chemico-Biological Inter. 126: 201-213 https://doi.org/10.1016/S0009-2797(00)00165-4
  65. Laddha, G. S. and T. E. Degaleesan. 1976. Transport Phenomena in Liquid Extraction. McGraw-Hill, New Dehli
  66. Lee, K. 1999. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J. Bacteriol. 181: 2719-2725
  67. Lee, S. K., J. W. Park, S. R. Park, J. S. Ahn, C. Y. Choi, and Y. J. Yoon. 2006. Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J. Microbiol. Biotechnol. 16: 974-978
  68. Lee, W. H., Y. C. Park, D. H. Lee, K. M. Park, and J. H. Seo. 2005. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase. Appl. Biochem. Biotechnol. 24: 827-836
  69. Lee, W.-H., M.-D. Kim, J.-B. Park, and J.-H. Seo. 2007. Optimization of substrate feeding and cofactor regeneration for an enhanced $\varepsilon$-caprolactone production in the recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. (Submitted.)
  70. Lilly, M. D. and J. M. Woodley. 1996. A structured approach to design and operation of biotransformation processes. J. Ind. Microbiol. 17: 24-29 https://doi.org/10.1007/BF01570144
  71. Meyer, A., M. Held, A. Schmid, H.-P. E. Kohler, and B. Witholt. 2003. Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnol. Bioeng. 81: 518-524 https://doi.org/10.1002/bit.10487
  72. Mihovilovic, M. D., B. Muller, and P. Stanetty. 2002. Monooxygenase-mediated Baeyer-Villiger oxidations. Eur. J. Org. Chem. 2002: 3711-3730 https://doi.org/10.1002/1099-0690(200211)2002:22<3711::AID-EJOC3711>3.0.CO;2-5
  73. Miyawaki, O., L. B. Wingard Jr., J. S. Brackin, and R. S. Silver. 1986. Formation of propylene oxide by Nocardia corallina immobilized in liquid paraffin. Biotechnol. Bioeng. 28: 343-348 https://doi.org/10.1002/bit.260280306
  74. Monti, J. A., S. T. Christian, and J. S. Schutzbach. 1987. Effects of dolichol on membrane permeability. Biochim. Biophys. Acta 905: 133-142 https://doi.org/10.1016/0005-2736(87)90017-4
  75. Munro, A. W., D. G. Leys, K. J. McLean, K. R. Marshall, T. W. B. Ost, S. Daff, C. S. Miles, S. K. Chapman, D. A. Lysek, C. C. Moser, C. C. Page, and P. L. Dutton. 2002. P450BM3: The very model of a modern flavocytochrome. Trends Biochem. Sci. 27: 250-257 https://doi.org/10.1016/S0968-0004(02)02086-8
  76. Neidhardt, F. C. 1996. Escherichia coli and Salmonella. ASM Press, Washington, D.C
  77. Neijssel, O. M. and D. E. Tempest. 1976. The role of energyspilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microb. 110: 305-311 https://doi.org/10.1007/BF00690243
  78. Nelis, H. J. C. F. and J. E. Sinsheimer. 1981. A sensitive fluorimetric procedure for the determination of aliphatic epoxides under physiological conditions. Anal. Biochem. 115: 151-157 https://doi.org/10.1016/0003-2697(81)90538-8
  79. O'Leary, N. D., K. E. O'Connor, and A. D. W. Dobson. 2002. Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microb. Rev. 26: 403-417 https://doi.org/10.1111/j.1574-6976.2002.tb00622.x
  80. Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. 2004. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol. 186: 5292- 5302 https://doi.org/10.1128/JB.186.16.5292-5302.2004
  81. Overhage, J., A. Steinbuchel, and H. Priefert. 2002. Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl. Environ. Microb. 68: 4315-4321 https://doi.org/10.1128/AEM.68.9.4315-4321.2002
  82. Panke, S. 1999. Production of (S)-styrene oxide with recombinant bacteria. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich
  83. Panke, S., V. deLorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl. Environ. Microb. 65: 5619-5623
  84. Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid. 2002. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41 https://doi.org/10.1002/bit.10346
  85. Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production: Characterization of the styrene degradation pathway of Pseudomonas sp. VLB120. Appl. Environ. Microb. 64: 2032-2043
  86. Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
  87. Park, J.-B. 2005. The productivity of biocatalytic epoxidation of styrene to (S)-styrene oxide. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich
  88. Park, J.-B., B. Buhler, T. Habicher, B. Hauer, S. Panke, B. Witholt, and A. Schmid. 2006. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol. Bioeng. 95: 501-512 https://doi.org/10.1002/bit.21037
  89. Park, J.-B., B. Buhler, S. Panke, B. Witholt, and A. Schmid. 2007. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent tolerant Pseudomonas sp. strain VLB120$\Delta$C. Biotechnol. Bioeng. (Submitted.)
  90. Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S. G. Lee, and S. H. Park. 2006. Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
  91. Phumathon, P. and G. M. Stephens. 1999. Production of toluene cis-glycol using recombinant Escherichia coli strains in glucose-limited fed batch culture. Enz. Microb. Technol. 25: 810-819 https://doi.org/10.1016/S0141-0229(99)00123-4
  92. Poole, R. K. and B. A. Haddock. 1975. Effects of sulfatelimited growth in continuous culture on the electron transport chain and energy conservation in Escherichia coli K12. Biochem. J. 152: 537-546 https://doi.org/10.1042/bj1520537
  93. Prichamont, S., D. J. Leak, and D. C. Stuckey. 1998. Alkene monooxygenase-catalyzed whole cell epoxidation in a two-liquid phase system. Enz. Microb. Technol. 22: 471-479 https://doi.org/10.1016/S0141-0229(97)00233-0
  94. Ramos-Gonzalez, M.-I., A. Ben-Bassat, M.-J. Campos, and J.-L. Ramos. 2003. Genetic engineering of a highly solventtolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl. Environ. Microb. 69: 5120-5127 https://doi.org/10.1128/AEM.69.9.5120-5127.2003
  95. Ramos, J. L., E. Duque, M.-T. Callegos, P. Codoy, M. I. Ramos-Gonzlez, A. Rojas, W. Teran, and A. Segura. 2002. Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microb. 56: 743-768 https://doi.org/10.1146/annurev.micro.56.012302.161038
  96. Ramos, J. L., E. Duque, M.-J. Huertas, and A. Haidor. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177: 3911-3916 https://doi.org/10.1128/jb.177.14.3911-3916.1995
  97. Reddy, J., C. Lee, M. Neeper, R. Greasham, and J. Zhang. 1999. Development of a bioconversion process for production of cis-1S,2R-indandiol from indene by recombinant Escherichia coli constructs. Appl. Microbiol. Biotechnol. 51: 614-620 https://doi.org/10.1007/s002530051440
  98. Resnick, S. M. and D. T. Gibson. 1996. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microb. 62: 4073-4080
  99. Resnick, S. M., K. Lee, and D. T. Gibson. 1996. Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Ind. Microbiol. 17: 438-457 https://doi.org/10.1007/BF01574775
  100. Rojas, A., E. Duque, A. Schmid, A. Hurtado, J.-L. Ramos, and A. Segura. 2004. Biotransformation in double-phase systems: Physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl. Environ. Microb. 70: 3637-3643 https://doi.org/10.1128/AEM.70.6.3637-3643.2004
  101. Rols, J. L., J. S. Condoret, C. Fonade, and G. Goma. 1990. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng. 35: 427-435 https://doi.org/10.1002/bit.260350410
  102. Rothen, S. A., M. Sauer, B. Sonnleitner, and B. Witholt. 1998. Biotransformation of octane by E. coli HB101[pGEc47] on defined medium: Octanoate production and product inhibition. Biotechnol. Bioeng. 58: 356-365 https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<356::AID-BIT2>3.0.CO;2-I
  103. Russell, J. B. and G. M. Cook. 1995. Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiol. Rev. 59: 48-62
  104. Santos, P. M., J. M. Blatny, I. DiBartolo, S. Valla, and E. Zennaro. 2000. Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl. Environ. Microb. 66: 1305-1310 https://doi.org/10.1128/AEM.66.4.1305-1310.2000
  105. Sauer, U., D. R. Lasko, J. Fianux, M. Hochuli, R. Glaser, T. Szyperski, K. Wuthrich, and J. E. Bailey. 1999. Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679-6688
  106. Schaler, T. A. and G. M. Klecka. 1986. Effects of dissolved oxygen concentration on biodegradation of 2,4- dichlorophenoxyacetic acid. Appl. Environ. Microb. 51: 950-955
  107. Schmid, A., K. Hofstetter, H.-J. Feiten, F. Hollmann, and B. Witholt. 2001. Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase. Adv. Synth. Cat. 343: 732-737 https://doi.org/10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q
  108. Schmid, A., F. Hollmann, J.-B. Park, and B. Buhler. 2002. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13: 359-366 https://doi.org/10.1016/S0958-1669(02)00336-1
  109. Shanklin, J., C. Achim, H. Schmidt, B. G. Fox, and E. Munck. 1997. Mossbauer studies of alkane w-hydroxylase: Evidence for a diiron cluster in an integral-membrane enzyme. Proc. Natl. Acad. Sci. USA 94: 2981-2986
  110. Shanklin, J., E. Whittle, and B. G. Fox. 1994. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33: 12787-12794 https://doi.org/10.1021/bi00209a009
  111. Shaw, J. P. and S. Harayama. 1995. Characterization in vitro of the hydroxylase component of xylene monooxygenase, the first enzyme of the TOL-plasmid-encoded pathway for the mineralization of toluenes and xylenes. J. Ferm. Bioeng. 79: 195-199 https://doi.org/10.1016/0922-338X(95)90602-V
  112. Shaw, J. P. and S. Harayama. 1992. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur. J. Biochem. 209: 51-61 https://doi.org/10.1111/j.1432-1033.1992.tb17260.x
  113. Sikkema, J., J. A. M. de Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022-8028
  114. Sikkema, J., J. A. M. de Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201-222
  115. Sikkema, J., B. Poolman, W. N. Konings, and J. A. M. de Bont. 1992. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J. Bacteriol. 174: 2986-2992 https://doi.org/10.1128/jb.174.9.2986-2992.1992
  116. Simpson, H. D., V. Alphand, and R. Furstoss. 2001. Microbiological transformations 49. Asymmetric biocatalysed Baeyer-Villiger oxidation: Improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin. J. Mol. Cat. B Enz. 16: 101-108 https://doi.org/10.1016/S1381-1177(01)00050-9
  117. Staijen, I. E., R. Marcionelli, and B. Witholt. 1999. The $P_{alkBFGHJKL}$ promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli $alk^{+}$ recombinants. J. Bacteriol. 181: 1610-1617
  118. Staijen, I. E., J. B. van Beilen, and B. Witholt. 2000. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Eur. J. Biochem. 267: 1957-1965 https://doi.org/10.1046/j.1432-1327.2000.01196.x
  119. Stark, D. and U. von Stockar. 2003. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv. Biochem. Eng./Biotechnol. 80: 149- 175 https://doi.org/10.1007/3-540-36782-9_5
  120. Steinig, G. H., A. G. Livingston, and D. C. Stuckey. 2000. Bioconversion of hydrophobic compounds in a continuous closed-gas-loop bioreactor: Feasibility assessment and epoxide production. Biotechnol. Bioeng. 70: 553-563 https://doi.org/10.1002/1097-0290(20001205)70:5<553::AID-BIT10>3.0.CO;2-2
  121. Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548-556 https://doi.org/10.1016/S0958-1669(02)00360-9
  122. Suen, N. and D. T. Gibson. 1994. Recombinant Escherichia coli strains synthesize active forms of naphthalene dioxygenase and its individual $\alpha$- and $\beta$-subunits. Gene 143: 67-71 https://doi.org/10.1016/0378-1119(94)90606-8
  123. Suzuki, M., T. Hayakawa, J. P. Shaw, M. Rekik, and S. Harayama. 1991. Primary structure of xylene monooxygenase: Similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173: 1690-1695 https://doi.org/10.1128/jb.173.5.1690-1695.1991
  124. Takahashi, O., J. Umezawa, K. Furuhashi, and M. Takagi. 1989. Stereocontrol of tertiary hydroxyl group via microbial epoxidation. Tetrahedr. Lett. 30: 1583-1584 https://doi.org/10.1016/S0040-4039(00)99526-1
  125. van Beilen, J. B., W. A. Deutz, A. Schmid, and B. Witholt. 2003. Practical applications of oxygenases: Issues and accomplishments. Trends Biotechnol. 21: 170-177 https://doi.org/10.1016/S0167-7799(03)00032-5
  126. van Beilen, J. B. and E. G. Funhoff. 2005. Expanding the alkane oxygenase toolbox: New enzymes and applications. Curr. Opin. Biotechnol. 16: 308-314 https://doi.org/10.1016/j.copbio.2005.04.005
  127. van Beilen, J. B., R. Holtackers, D. Luscher, U. Bauer, B. Witholt, and W. A. Duetz. 2005. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl. Environ. Microb. 71: 1737-1744 https://doi.org/10.1128/AEM.71.4.1737-1744.2005
  128. van Beilen, J. B., J. Kingma, and B. Witholt. 1994. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enz. Microb. Technol. 16: 904-911 https://doi.org/10.1016/0141-0229(94)90066-3
  129. van Beilen, J. B., D. Penninga, and B. Witholt. 1992. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 267: 9149-9201
  130. van den Tweel, W. J. J., J. A. M. de Bont, M. J. A. W. Morage, E. H. Marsman, J. Tramper, and J. Koppejan. 1988. Continuous production of cis-1,2-dihydroxycyclohexa- 3,5-diene (cis-benzeneglycol) from benzene by a mutant of a benzene-degrading Pseudomonas sp. Enz. Microb. Technol. 10: 134-142 https://doi.org/10.1016/0141-0229(88)90078-6
  131. van der Meer, A. B., A. A. C. M. Beenackers, and E. J. Stamhuis. 1986. Microbial production of epoxides from alkenes in continuous multi-phase reactors. Chem. Eng. Sci. 41: 607-616 https://doi.org/10.1016/0009-2509(86)87137-8
  132. Weber, F. J., L. P. Ooijkaas, R. M. W. Schemen, S. Hartmans, and J. A. M. de Bont. 1993. Adaptations of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microb. 59: 3502-3504
  133. Wery, J., B. Hidayat, J. Kieboom, and J. A. M. de Bont. 2001. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J. Biol. Chem. 276: 5700- 5706 https://doi.org/10.1074/jbc.M007687200
  134. Wery, J., D. I. Mendes da Silva, and J. A. M. de Bont. 2000. A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl. Microbiol. Biotechnol. 54: 180-185 https://doi.org/10.1007/s002530000381
  135. Wong, J. W., J. H. A. Watson, J. F. Bouressa, M. P. Burns, J. J. Cawley, A. E. Doro, D. B. Guzek, M. A. Hintz, E. L. McCormick, D. A. Scully, J. M. Siderewicz, W. J. Taylor, S. J. Truesdell, and R. G. Wax. 2002. Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org. Proc. Res. Dev. 6: 477-481
  136. Wubbolts, M. G., O. Favre-Bulle, and B. Witholt. 1996. Biosynthesis of synthons in two-liquid-phase media. Biotechnol. Bioeng. 52: 301-308 https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2<301::AID-BIT10>3.0.CO;2-M
  137. Wubbolts, M. G., J. Hoven, B. Melgert, and B. Witholt. 1994. Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enz. Microb. Technol. 16: 887-893 https://doi.org/10.1016/0141-0229(94)90064-7
  138. Wubbolts, M. G., P. Reuvekamp, and B. Witholt. 1994. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enz. Microb. Technol. 16: 608-615 https://doi.org/10.1016/0141-0229(94)90127-9
  139. Yildirim, S., J. Zezula, T. Hudlicky, B. Witholt, and A. Schmid. 2004. Asymmetric dihydroxylation of cinnamonitrile to trans-3-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]- acrylonitrile using chlorobenzene dioxygenase in Escherichia coli (pTEZ30). Adv. Synth. Cat. 346: 1-11
  140. Zambianchi, F., S. Raimondi, P. Pasta, G. Carrea, N. Gaggero, and J. M. Woodley. 2004. Comparison of cyclohexanone monooxygenase as an isolated enzyme and whole cell biocatalyst for the enantioselective oxidation of 1,3-dithiane. J. Mol. Cat. B Enz. 31: 165-171 https://doi.org/10.1016/j.molcatb.2004.09.005