References
- Adam, W., M. Lazarus, C. R. SahaMoller, O. Weichold, U. Hoch, D. Haring, and P. Schreier. 1999. Biotransformations with peroxides. Adv. Biochem. Eng. Biotechnol. 63: 73-108 https://doi.org/10.1271/bbb.63.73
- Amanullah, A., C. J. Hewitt, A. W. Nienow, C. Lee, M. Chartrain, B. C. Buckland, S. W. Drew, and J. M. Woodley. 2002. Fed-batch bioconversion of indene to cis-indandiol. Enz. Microb. Technol. 31: 954-967 https://doi.org/10.1016/S0141-0229(02)00183-7
- Andersson, L. A. and L. A. Dawson. 1991. EXAFS spectroscopy of heme-containing oxygenases and peroxidases. Struct. Bonding 64: 1-40
- Atkinson, B. and F. Mavituna. 1991. Biochemical Engineering and Biotechnology Handbook, 2nd Ed. Stockton Press, New York
- Axe, D. D. and J. E. Bailey. 1995. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol. Bioeng. 47: 8-19 https://doi.org/10.1002/bit.260470103
- Bachmann, R., E. Bastianelli, J. Riese, and W. Schlenzka. 2000. Using plants as plants. McKinsey Quarterly 93-99
- Baldascini, H., K. J. Ganzeveld, D. B. Janssen, and A. A. C. M. Beenackers. 2001. Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquidphase system. Biotechnol. Bioeng. 73: 44-54 https://doi.org/10.1002/1097-0290(20010405)73:1<44::AID-BIT1035>3.0.CO;2-C
- Banerjee, S., A. E. Dombrowski, and A. J. Scala. 1983. Regiochemistry of camphor analog oxidation by Pseudomonas putida. Appl. Environ. Microb. 45: 1405-1407
- Bernasconi, S., F. Orsini, G. Sello, A. Colmegna, E. Galli, and G. Bestetti. 2000. Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedr. Lett. 41: 9157-9161 https://doi.org/10.1016/S0040-4039(00)01639-7
- Bosetti, A., J. B. van Beilen, H. Preusting, R. G. Lageveen, and B. Witholt. 1992. Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enz. Microb. Technol. 14: 702-708 https://doi.org/10.1016/0141-0229(92)90109-2
- Brass, J. M., F. W. J. M. M. Hoeks, and M. Rohner. 1997. Application of modeling techniques for the improvement of industrial bioprocesses. J. Biotechnol. 59: 63-72 https://doi.org/10.1016/S0168-1656(97)00165-X
- Brink, L. E. S. and J. Tramper. 1987. Production of propene oxide in an organic liquid-phase immobilized cell reactor. Enz. Microb. Technol. 9: 612-618 https://doi.org/10.1016/0141-0229(87)90115-3
- Buhler, B., I. Bollhalder, B. Hauer, B. Witholt, and A. Schmid. 2003. Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons at a technical scale. Biotechnol. Bioeng. 82: 833-842 https://doi.org/10.1002/bit.10637
- Buhler, B. and A. Schmid. 2004. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J. Biotechnol. 113: 183-210 https://doi.org/10.1016/j.jbiotec.2004.03.027
- Buhler, B., A. Schmid, B. Hauer, and B. Witholt. 2000. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J. Biol. Chem. 275: 10085-10092 https://doi.org/10.1074/jbc.275.14.10085
- Buhler, B., B. Witholt, B. Hauer, and A. Schmid. 2002. Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl. Environ. Microb. 68: 560- 568 https://doi.org/10.1128/AEM.68.2.560-568.2002
- Calhoun, M. W., K. L. Oden, R. B. Gennis, M. J. Teixeira de Mattos, and O. M. Neijssel. 1993. Energetic efficiency of Escherichia coli: Effect of mutations in components of the aerobic respiratory chain. J. Bacteriol. 175: 3020- 3025 https://doi.org/10.1128/jb.175.10.3020-3025.1993
- Ceen, E. G., P. Dunnill, and J. P. R. Herrmann. 1988. Two-liquid phase reactor studies of 11a-hydroxylation of progesterone by Aspergillus ochraeus. Biotechnol. Bioeng. 31: 743-746 https://doi.org/10.1002/bit.260310718
- Chang, D.-E., D. J. Smalley, and T. Conway. 2002. Gene expression profiling of Escherichia coli growth transitions: An expanded stringent response model. Mol. Microb. 45: 289-306 https://doi.org/10.1046/j.1365-2958.2002.03001.x
- Charles, M. and J. Wilson. 1994. Bioprocess Engineering: Systems Equipment and Facilities. John Wiley & Sons, New York
- Choi, J.-H., T.-K. Kim, Y.-M. Kim, W.-C. Kim, K. Park, and I.-K. Rhee. 2006. Cloning and characterization of a gene cluster for cyclohexanone oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 16: 511-518
- Davis, H. G. 1989. Biotransformations in Preparative Organic Chemistry. Academic Press, London, U.K
- de Bont, J. A. M., C. G. van Ginkel, J. Tramper, and K. C. A. M. Luyben. 1983. Ethylene oxide production by immobilized Mycobacterium Py1 in a gas-solid bioreactor. de Bont, J. A. M., C. G. van Ginkel, J. Tramper, and K. C. A. M. Luyben. 1983. Ethylene oxide production by immobilized Mycobacterium Py1 in a gas-solid bioreactor. Enz. Microb. Technol. 5: 55-59 https://doi.org/10.1016/0141-0229(83)90065-0
- de Carvalho, C. C. C. R. and M. M. R. da Fonseca. 2002. Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J. Mol. Cat. B Enz. 19-20: 377-387
- de Smet, M. J., J. Kingma, H. Wynberg, and B. Witholt. 1981. Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two liquid phase system containing high concentrations of 1-octene. Appl. Environ. Microb. 42: 811-816
- Doig, S. D., P. J. Avenell, P. A. Bird, P. Gallati, K. S. Lander, G. J. Lye, R. Wohlgemuth, and J. M. Woodley. 2002. Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol. Bioeng. 18: 1039- 1046
- Doig, S. D., A. T. Boam, A. G. Livingstone, and D. C. Stuckey. 1999. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans in a membrane bioreactor. Biotechnol. Bioeng. 63: 601-611 https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<601::AID-BIT10>3.0.CO;2-J
- Duetz, W. A., A. H. M. Fjallman, S. Y. Ren, C. Jourdat, and B. Witholt. 2001. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl. Environ. Microb. 67: 2829-2832 https://doi.org/10.1128/AEM.67.6.2829-2832.2001
- Duetz, W. A., J. B. van Beilen, and B. Witholt. 2001. Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425 https://doi.org/10.1016/S0958-1669(00)00237-8
- Emmerling, M., M. Dauner, A. Ponti, J. Fianux, M. Hochuli, T. Szyperski, K. Wuthrich, J. E. Bailey, and U. Sauer. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152-164 https://doi.org/10.1128/JB.184.1.152-164.2002
-
Favre-Bulle, O., E. Weenink, T. Vos, H. Preusting, and B. Witholt. 1993. Continuous bioconversion of n-octane to octanoic acid by recombinant Escherichia coli (
$alk^{+}$ ) growing in a two-liquid-phase chemostat. Biotechnol. Bioeng. 41: 263-272 https://doi.org/10.1002/bit.260410213 - Favre-Bulle, O. and B. Witholt. 1992. Biooxidation of noctane by a recombinant Escherichia coli in a two-liquidphase system: Effect of medium components on cell growth and alkane oxidation activity. Enz. Microb. Technol. 14: 931-937 https://doi.org/10.1016/0141-0229(92)90058-V
-
Fruetel, J. A., J. R. Collins, D. L. Camper, G. H. Loew, and P. R. Ortiz de Montellano. 1992. Calculated and experimental absolute stereochemistry of the styrene and
$\beta$ -methylstyrene epoxides formed by cytochrome P450cam. J. Am. Chem. Soc. 114: 6987-6993 https://doi.org/10.1021/ja00044a006 - Fu, H., M. Newcomb, and C.-H. Wong. 1991. Pseudomonas oleovorans monooxygenase catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring opening rate exceeding the oxygen rebound rate. J. Am. Chem. Soc. 113: 5878-5880 https://doi.org/10.1021/ja00015a061
- Fu, H., G.-J. Shen, and C.-H. Wong. 1991. Asymmetric epoxidation of allyl alcohol derivatives by w-hydroxylase from Pseudomonas oleovorans. Recueil des Travaux Chimiques des Pays-Bas 110: 167-170 https://doi.org/10.1002/recl.19911100506
- Furuhashi, K. 1986. A fermentation process for the production of optically active epoxides. Chem. Econ. Eng. Rev. 18: 21-26
- Furuhashi, K. and M. Takagi. 1984. Optimization of a medium for the production of 1,2-epoxytetradecane by Nocardia corallina B-276. Appl. Microbiol. Biotechnol. 20: 6-9
- Galkin, A., L. Kulakova, T. Yoshimura, K. Soda, and N. Esaki. 1997. Synthesis of optically active amino acids from keto acids with Escherichia coli cells expressing heterologous genes. Appl. Environ. Microb. 63: 4651-4656
- Glieder, A., E. T. Farinas, and F. H. Arnold. 2002. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135-1139 https://doi.org/10.1038/nbt744
- Goswami, P. and H. D. Singh. 1991. Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol. Bioeng. 37: 1-11 https://doi.org/10.1002/bit.260370103
- Griffiths, M. 2001. The Application of Biotechnology to Industrial Sustainability. OECD, Paris
- Groger, H., O. May, H. Werner, A. Menzel, and J. Altenbuchner. 2006. A “Second-Generation process” for the synthesis of L-neopentylglycine: Asymmetric reductive amination using a recombinant whole cell catalyst. Org. Proc. Res. Dev. 10: 666-669
- Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S. G. Lee, and S. H. Park. 2006. Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enz. Microb. Technol. 39: 1264- 1269 https://doi.org/10.1016/j.enzmictec.2006.03.002
- Haring, H. G., F. Rijkens, and H. Boelens. 1972. Olfactory studies on enantiomeric eremophilane. J. Agric. Food Chem. 20: 1018 https://doi.org/10.1021/jf60183a011
- Harrop, A. J., J. M. Woodley, and M. D. Lilly. 1992. Production of naphthalene-cis-glycol by Pseudomonas putida in the presence of organic solvents. Enz. Microb. Technol. 14: 725-730 https://doi.org/10.1016/0141-0229(92)90112-2
- Hartmans, S., J. A. M. de Bont, and W. Harder. 1989. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microb. Rev. 63: 235-264 https://doi.org/10.1016/0168-6445(89)90034-X
- Hartmans, S., M. J. van der Werf, and J. A. M. de Bont. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microb. 56: 1347-1351
- Held, M., A. Schmid, H. P. E. Kohler, W. Suske, B. Witholt, and M. G Wubbolts. 1999. An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. Biotechnol. Bioeng. 62: 641-648 https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<641::AID-BIT3>3.0.CO;2-H
- Held, M., W. Suske, A. Schmid, K.-H. Engesser, H.-P. E. Kohler, B. Witholt, and M. G. Wubbolts. 1998. Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP1. J. Mol. Cat. B Enz. 5: 87-93 https://doi.org/10.1016/S1381-1177(98)00012-5
- Hou, C. T. 1984. Propylene oxide production from propylene by immobilized whole cells of Methylosinus sp. CRL 31 in a gas-solid bioreactor. Appl. Microbiol. Biotechnol. 19: 1-4
- Hlisken, L. E., R. Beeftink, J. A. M. de Bont, and J. Wery. 2001. High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl. Microbiol. Biotechnol. 55: 571-577 https://doi.org/10.1007/s002530000566
- Husken, L. E., M. C. F. Dalm, J. Wery, J. Tramper, J. A. M. de Bont, and R. Beeftink. 2001. Integrated bioproduction and extraction of 3-methylcatechol. J. Biotechnol. 88: 11- 19 https://doi.org/10.1016/S0168-1656(01)00252-8
- Husken, L. E., J. A. M. de Bont, R. Beeftink, J. Tramper, and J. Wery. 2002. Optimization of microbial 3-methylcatechol production as affected by culture conditions. Biocat. Biotransf. 20: 57-61 https://doi.org/10.1080/10242420210152
- Husken, L. E., M. Oomes, K. Schroen, J. Tramper, J. A. M. de Bont, and R. Beeftink. 2002. Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water twophase system. J. Biotechnol. 96: 281-289 https://doi.org/10.1016/S0168-1656(02)00045-7
- Inoue, A. and K. Horikoshi. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264-266 https://doi.org/10.1038/338264a0
- Isken, S., A. Derks, P. F. G. Wolffs, and J. A. M. de Bont. 1999. Effect of organic solvents on the yield of solventtolerant Pseudomonas putida S12. Appl. Environ. Microb. 65: 2631-2635
- Kaup, B., S. Bringer-Meyer, and H. Sahm. 2004. Metabolic engineering of Escherichia coli: Construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl. Microbiol. Biotechnol. 64: 333- 339 https://doi.org/10.1007/s00253-003-1470-9
- Karp, P. D., M. Riley, M. Saier, I. T. Paulsen, J. Collado- Vides, S. M. Paley, A. Pellegrini-Toole, C. Bonavides, and S. Gama-Castro. 2002. The EcoCyc database. Nucleic Acids Res. 30: 56-58 https://doi.org/10.1093/nar/30.1.56
- Kawakami, K., S. Tsuruda, and K. Miyagi. 1990. Immobilization of microbial cells in a mixed matrix of silicone polymer and calcium alginate gel: Epoxidation of 1- octene by Nocardia corallina B-276 in organic media. Biotechnol. Prog. 6: 357-361 https://doi.org/10.1021/bp00005a007
- Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomoans putida S12 solvent tolerance. J. Biol. Chem. 273: 85-91 https://doi.org/10.1074/jbc.273.1.85
- Kiener, A. 1995. Biosynthesis of functionalized aromatic Nheterocycles. Chemtech September 31-35
- Klinman, J. P., K. M. Welsh, and R. Hogue-Angeletti. 1977. Epoxide inhibition of alcohol dehydrogenases. Identification of modified cysteines in yeast alcohol dehydrogenase and demonstration of reversible and irreversible inhibition of liver alcohol dehydrogenase by styrene oxide. Biochemistry 16: 5521-5527 https://doi.org/10.1021/bi00644a020
- Kok, M., R. Oldenhuis, M. P. G. van der Linden, P. Raatjes, J. Kingma, P. H. van Lelyveld, and B. Witholt. 1989. The Pseudomonas oleovorans alkane hydroxylase gene: Sequence and expression. J. Biol. Chem. 264: 5435-5441
- Koskinen, M., D. Calebiro, and K. Hemminki. 2000. Styrene oxide-induced 2'-deoxycytidine adducts: Implications for the mutagenicity of styrene oxide. Chemico-Biological Inter. 126: 201-213 https://doi.org/10.1016/S0009-2797(00)00165-4
- Laddha, G. S. and T. E. Degaleesan. 1976. Transport Phenomena in Liquid Extraction. McGraw-Hill, New Dehli
- Lee, K. 1999. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide. J. Bacteriol. 181: 2719-2725
- Lee, S. K., J. W. Park, S. R. Park, J. S. Ahn, C. Y. Choi, and Y. J. Yoon. 2006. Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J. Microbiol. Biotechnol. 16: 974-978
- Lee, W. H., Y. C. Park, D. H. Lee, K. M. Park, and J. H. Seo. 2005. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase. Appl. Biochem. Biotechnol. 24: 827-836
-
Lee, W.-H., M.-D. Kim, J.-B. Park, and J.-H. Seo. 2007. Optimization of substrate feeding and cofactor regeneration for an enhanced
$\varepsilon$ -caprolactone production in the recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. (Submitted.) - Lilly, M. D. and J. M. Woodley. 1996. A structured approach to design and operation of biotransformation processes. J. Ind. Microbiol. 17: 24-29 https://doi.org/10.1007/BF01570144
- Meyer, A., M. Held, A. Schmid, H.-P. E. Kohler, and B. Witholt. 2003. Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnol. Bioeng. 81: 518-524 https://doi.org/10.1002/bit.10487
- Mihovilovic, M. D., B. Muller, and P. Stanetty. 2002. Monooxygenase-mediated Baeyer-Villiger oxidations. Eur. J. Org. Chem. 2002: 3711-3730 https://doi.org/10.1002/1099-0690(200211)2002:22<3711::AID-EJOC3711>3.0.CO;2-5
- Miyawaki, O., L. B. Wingard Jr., J. S. Brackin, and R. S. Silver. 1986. Formation of propylene oxide by Nocardia corallina immobilized in liquid paraffin. Biotechnol. Bioeng. 28: 343-348 https://doi.org/10.1002/bit.260280306
- Monti, J. A., S. T. Christian, and J. S. Schutzbach. 1987. Effects of dolichol on membrane permeability. Biochim. Biophys. Acta 905: 133-142 https://doi.org/10.1016/0005-2736(87)90017-4
- Munro, A. W., D. G. Leys, K. J. McLean, K. R. Marshall, T. W. B. Ost, S. Daff, C. S. Miles, S. K. Chapman, D. A. Lysek, C. C. Moser, C. C. Page, and P. L. Dutton. 2002. P450BM3: The very model of a modern flavocytochrome. Trends Biochem. Sci. 27: 250-257 https://doi.org/10.1016/S0968-0004(02)02086-8
- Neidhardt, F. C. 1996. Escherichia coli and Salmonella. ASM Press, Washington, D.C
- Neijssel, O. M. and D. E. Tempest. 1976. The role of energyspilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microb. 110: 305-311 https://doi.org/10.1007/BF00690243
- Nelis, H. J. C. F. and J. E. Sinsheimer. 1981. A sensitive fluorimetric procedure for the determination of aliphatic epoxides under physiological conditions. Anal. Biochem. 115: 151-157 https://doi.org/10.1016/0003-2697(81)90538-8
- O'Leary, N. D., K. E. O'Connor, and A. D. W. Dobson. 2002. Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microb. Rev. 26: 403-417 https://doi.org/10.1111/j.1574-6976.2002.tb00622.x
- Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. 2004. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol. 186: 5292- 5302 https://doi.org/10.1128/JB.186.16.5292-5302.2004
- Overhage, J., A. Steinbuchel, and H. Priefert. 2002. Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl. Environ. Microb. 68: 4315-4321 https://doi.org/10.1128/AEM.68.9.4315-4321.2002
- Panke, S. 1999. Production of (S)-styrene oxide with recombinant bacteria. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich
- Panke, S., V. deLorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl. Environ. Microb. 65: 5619-5623
- Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid. 2002. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41 https://doi.org/10.1002/bit.10346
- Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production: Characterization of the styrene degradation pathway of Pseudomonas sp. VLB120. Appl. Environ. Microb. 64: 2032-2043
- Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
- Park, J.-B. 2005. The productivity of biocatalytic epoxidation of styrene to (S)-styrene oxide. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich
- Park, J.-B., B. Buhler, T. Habicher, B. Hauer, S. Panke, B. Witholt, and A. Schmid. 2006. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol. Bioeng. 95: 501-512 https://doi.org/10.1002/bit.21037
-
Park, J.-B., B. Buhler, S. Panke, B. Witholt, and A. Schmid. 2007. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent tolerant Pseudomonas sp. strain VLB120
$\Delta$ C. Biotechnol. Bioeng. (Submitted.) - Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S. G. Lee, and S. H. Park. 2006. Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
- Phumathon, P. and G. M. Stephens. 1999. Production of toluene cis-glycol using recombinant Escherichia coli strains in glucose-limited fed batch culture. Enz. Microb. Technol. 25: 810-819 https://doi.org/10.1016/S0141-0229(99)00123-4
- Poole, R. K. and B. A. Haddock. 1975. Effects of sulfatelimited growth in continuous culture on the electron transport chain and energy conservation in Escherichia coli K12. Biochem. J. 152: 537-546 https://doi.org/10.1042/bj1520537
- Prichamont, S., D. J. Leak, and D. C. Stuckey. 1998. Alkene monooxygenase-catalyzed whole cell epoxidation in a two-liquid phase system. Enz. Microb. Technol. 22: 471-479 https://doi.org/10.1016/S0141-0229(97)00233-0
- Ramos-Gonzalez, M.-I., A. Ben-Bassat, M.-J. Campos, and J.-L. Ramos. 2003. Genetic engineering of a highly solventtolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl. Environ. Microb. 69: 5120-5127 https://doi.org/10.1128/AEM.69.9.5120-5127.2003
- Ramos, J. L., E. Duque, M.-T. Callegos, P. Codoy, M. I. Ramos-Gonzlez, A. Rojas, W. Teran, and A. Segura. 2002. Mechanisms of solvent tolerance in Gram-negative bacteria. Annu. Rev. Microb. 56: 743-768 https://doi.org/10.1146/annurev.micro.56.012302.161038
- Ramos, J. L., E. Duque, M.-J. Huertas, and A. Haidor. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177: 3911-3916 https://doi.org/10.1128/jb.177.14.3911-3916.1995
- Reddy, J., C. Lee, M. Neeper, R. Greasham, and J. Zhang. 1999. Development of a bioconversion process for production of cis-1S,2R-indandiol from indene by recombinant Escherichia coli constructs. Appl. Microbiol. Biotechnol. 51: 614-620 https://doi.org/10.1007/s002530051440
- Resnick, S. M. and D. T. Gibson. 1996. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microb. 62: 4073-4080
- Resnick, S. M., K. Lee, and D. T. Gibson. 1996. Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Ind. Microbiol. 17: 438-457 https://doi.org/10.1007/BF01574775
- Rojas, A., E. Duque, A. Schmid, A. Hurtado, J.-L. Ramos, and A. Segura. 2004. Biotransformation in double-phase systems: Physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl. Environ. Microb. 70: 3637-3643 https://doi.org/10.1128/AEM.70.6.3637-3643.2004
- Rols, J. L., J. S. Condoret, C. Fonade, and G. Goma. 1990. Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng. 35: 427-435 https://doi.org/10.1002/bit.260350410
- Rothen, S. A., M. Sauer, B. Sonnleitner, and B. Witholt. 1998. Biotransformation of octane by E. coli HB101[pGEc47] on defined medium: Octanoate production and product inhibition. Biotechnol. Bioeng. 58: 356-365 https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<356::AID-BIT2>3.0.CO;2-I
- Russell, J. B. and G. M. Cook. 1995. Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiol. Rev. 59: 48-62
- Santos, P. M., J. M. Blatny, I. DiBartolo, S. Valla, and E. Zennaro. 2000. Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl. Environ. Microb. 66: 1305-1310 https://doi.org/10.1128/AEM.66.4.1305-1310.2000
- Sauer, U., D. R. Lasko, J. Fianux, M. Hochuli, R. Glaser, T. Szyperski, K. Wuthrich, and J. E. Bailey. 1999. Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679-6688
- Schaler, T. A. and G. M. Klecka. 1986. Effects of dissolved oxygen concentration on biodegradation of 2,4- dichlorophenoxyacetic acid. Appl. Environ. Microb. 51: 950-955
- Schmid, A., K. Hofstetter, H.-J. Feiten, F. Hollmann, and B. Witholt. 2001. Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase. Adv. Synth. Cat. 343: 732-737 https://doi.org/10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q
- Schmid, A., F. Hollmann, J.-B. Park, and B. Buhler. 2002. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13: 359-366 https://doi.org/10.1016/S0958-1669(02)00336-1
- Shanklin, J., C. Achim, H. Schmidt, B. G. Fox, and E. Munck. 1997. Mossbauer studies of alkane w-hydroxylase: Evidence for a diiron cluster in an integral-membrane enzyme. Proc. Natl. Acad. Sci. USA 94: 2981-2986
- Shanklin, J., E. Whittle, and B. G. Fox. 1994. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33: 12787-12794 https://doi.org/10.1021/bi00209a009
- Shaw, J. P. and S. Harayama. 1995. Characterization in vitro of the hydroxylase component of xylene monooxygenase, the first enzyme of the TOL-plasmid-encoded pathway for the mineralization of toluenes and xylenes. J. Ferm. Bioeng. 79: 195-199 https://doi.org/10.1016/0922-338X(95)90602-V
- Shaw, J. P. and S. Harayama. 1992. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur. J. Biochem. 209: 51-61 https://doi.org/10.1111/j.1432-1033.1992.tb17260.x
- Sikkema, J., J. A. M. de Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022-8028
- Sikkema, J., J. A. M. de Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201-222
- Sikkema, J., B. Poolman, W. N. Konings, and J. A. M. de Bont. 1992. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J. Bacteriol. 174: 2986-2992 https://doi.org/10.1128/jb.174.9.2986-2992.1992
- Simpson, H. D., V. Alphand, and R. Furstoss. 2001. Microbiological transformations 49. Asymmetric biocatalysed Baeyer-Villiger oxidation: Improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin. J. Mol. Cat. B Enz. 16: 101-108 https://doi.org/10.1016/S1381-1177(01)00050-9
-
Staijen, I. E., R. Marcionelli, and B. Witholt. 1999. The
$P_{alkBFGHJKL}$ promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli$alk^{+}$ recombinants. J. Bacteriol. 181: 1610-1617 - Staijen, I. E., J. B. van Beilen, and B. Witholt. 2000. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Eur. J. Biochem. 267: 1957-1965 https://doi.org/10.1046/j.1432-1327.2000.01196.x
- Stark, D. and U. von Stockar. 2003. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv. Biochem. Eng./Biotechnol. 80: 149- 175 https://doi.org/10.1007/3-540-36782-9_5
- Steinig, G. H., A. G. Livingston, and D. C. Stuckey. 2000. Bioconversion of hydrophobic compounds in a continuous closed-gas-loop bioreactor: Feasibility assessment and epoxide production. Biotechnol. Bioeng. 70: 553-563 https://doi.org/10.1002/1097-0290(20001205)70:5<553::AID-BIT10>3.0.CO;2-2
- Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548-556 https://doi.org/10.1016/S0958-1669(02)00360-9
-
Suen, N. and D. T. Gibson. 1994. Recombinant Escherichia coli strains synthesize active forms of naphthalene dioxygenase and its individual
$\alpha$ - and$\beta$ -subunits. Gene 143: 67-71 https://doi.org/10.1016/0378-1119(94)90606-8 - Suzuki, M., T. Hayakawa, J. P. Shaw, M. Rekik, and S. Harayama. 1991. Primary structure of xylene monooxygenase: Similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173: 1690-1695 https://doi.org/10.1128/jb.173.5.1690-1695.1991
- Takahashi, O., J. Umezawa, K. Furuhashi, and M. Takagi. 1989. Stereocontrol of tertiary hydroxyl group via microbial epoxidation. Tetrahedr. Lett. 30: 1583-1584 https://doi.org/10.1016/S0040-4039(00)99526-1
- van Beilen, J. B., W. A. Deutz, A. Schmid, and B. Witholt. 2003. Practical applications of oxygenases: Issues and accomplishments. Trends Biotechnol. 21: 170-177 https://doi.org/10.1016/S0167-7799(03)00032-5
- van Beilen, J. B. and E. G. Funhoff. 2005. Expanding the alkane oxygenase toolbox: New enzymes and applications. Curr. Opin. Biotechnol. 16: 308-314 https://doi.org/10.1016/j.copbio.2005.04.005
- van Beilen, J. B., R. Holtackers, D. Luscher, U. Bauer, B. Witholt, and W. A. Duetz. 2005. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl. Environ. Microb. 71: 1737-1744 https://doi.org/10.1128/AEM.71.4.1737-1744.2005
- van Beilen, J. B., J. Kingma, and B. Witholt. 1994. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enz. Microb. Technol. 16: 904-911 https://doi.org/10.1016/0141-0229(94)90066-3
- van Beilen, J. B., D. Penninga, and B. Witholt. 1992. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 267: 9149-9201
- van den Tweel, W. J. J., J. A. M. de Bont, M. J. A. W. Morage, E. H. Marsman, J. Tramper, and J. Koppejan. 1988. Continuous production of cis-1,2-dihydroxycyclohexa- 3,5-diene (cis-benzeneglycol) from benzene by a mutant of a benzene-degrading Pseudomonas sp. Enz. Microb. Technol. 10: 134-142 https://doi.org/10.1016/0141-0229(88)90078-6
- van der Meer, A. B., A. A. C. M. Beenackers, and E. J. Stamhuis. 1986. Microbial production of epoxides from alkenes in continuous multi-phase reactors. Chem. Eng. Sci. 41: 607-616 https://doi.org/10.1016/0009-2509(86)87137-8
- Weber, F. J., L. P. Ooijkaas, R. M. W. Schemen, S. Hartmans, and J. A. M. de Bont. 1993. Adaptations of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microb. 59: 3502-3504
- Wery, J., B. Hidayat, J. Kieboom, and J. A. M. de Bont. 2001. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J. Biol. Chem. 276: 5700- 5706 https://doi.org/10.1074/jbc.M007687200
- Wery, J., D. I. Mendes da Silva, and J. A. M. de Bont. 2000. A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl. Microbiol. Biotechnol. 54: 180-185 https://doi.org/10.1007/s002530000381
- Wong, J. W., J. H. A. Watson, J. F. Bouressa, M. P. Burns, J. J. Cawley, A. E. Doro, D. B. Guzek, M. A. Hintz, E. L. McCormick, D. A. Scully, J. M. Siderewicz, W. J. Taylor, S. J. Truesdell, and R. G. Wax. 2002. Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org. Proc. Res. Dev. 6: 477-481
- Wubbolts, M. G., O. Favre-Bulle, and B. Witholt. 1996. Biosynthesis of synthons in two-liquid-phase media. Biotechnol. Bioeng. 52: 301-308 https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2<301::AID-BIT10>3.0.CO;2-M
- Wubbolts, M. G., J. Hoven, B. Melgert, and B. Witholt. 1994. Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enz. Microb. Technol. 16: 887-893 https://doi.org/10.1016/0141-0229(94)90064-7
- Wubbolts, M. G., P. Reuvekamp, and B. Witholt. 1994. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enz. Microb. Technol. 16: 608-615 https://doi.org/10.1016/0141-0229(94)90127-9
- Yildirim, S., J. Zezula, T. Hudlicky, B. Witholt, and A. Schmid. 2004. Asymmetric dihydroxylation of cinnamonitrile to trans-3-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]- acrylonitrile using chlorobenzene dioxygenase in Escherichia coli (pTEZ30). Adv. Synth. Cat. 346: 1-11
- Zambianchi, F., S. Raimondi, P. Pasta, G. Carrea, N. Gaggero, and J. M. Woodley. 2004. Comparison of cyclohexanone monooxygenase as an isolated enzyme and whole cell biocatalyst for the enantioselective oxidation of 1,3-dithiane. J. Mol. Cat. B Enz. 31: 165-171 https://doi.org/10.1016/j.molcatb.2004.09.005