DOI QR코드

DOI QR Code

태안지역 강우의 이온 조성

Characteristics of Ionic Composition of Rainwater in Taean

  • 이종식 (농업과학기술원 환경생태과) ;
  • 김건엽 (농업과학기술원 환경생태과) ;
  • 이정택 (농업과학기술원 환경생태과) ;
  • 이관용 (태안군농업기술센터) ;
  • 박병용 (태안군농업기술센터)
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Gun-Yeob (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jeong-Taek (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Kwan-Yong (Taean-gun Agricultural Development & Technology Center) ;
  • Park, Byoung-Yong (Taean-gun Agricultural Development & Technology Center)
  • 발행 : 2007.03.31

초록

태안지역에서 영농기간중 강우의 화학적 특성을 알아보기 위하여 2005년 4월부터 10월까지 26점의 강우를 채수하여 pH 및 화학적 성분조성을 조사하였다. 강우량을 고려한 가중평균(volume-weighted mean)이온농도 변화와 알카리성 물질들에 의한 강우의 산성도 중화를 평가한 결과는 다음과 같다. 시료분석의 신뢰성을 검토한 전기전도도 수지 평가에서는 높은 상관을 나타내어 분석 이온들에 대한 신뢰가 인정되었다. 조사기간 중 태안지역에 내린 강우의 pH별 분포는 pH $4.5{\sim}5.0$ 범위가 가장 많았으며, 월별로는 6월이 다른 조사기간에 비해 산성도가 낮았다. 강우량과 강우의 EC 관계에서는 강우기가 비강우기인 6월 이전에 비해 EC가 낮은 계절적 특성을 보였다. 강우의 조성에서 양이온 구성은 $Na^+>H^+>Ca^{2+}>NH_4^+>K^+>Mg^{2+}$의 순이었으며, $Na^+,\;NH_4^+,\;Ca^{2+}$$H^+$가 전체 양이온 함량의 94% 이상을 차지하였다. 음이온은 $SO_4^{2-}>NO_3^->Cl^-$ 순으로 $SO_4^{2-}$$NO_3^-$가 약 80%를 차지하였다. 조사기간 중 강우산성도 중화는 6월이 다른 기간에 비해 높았음을 보였다. 총 sulfate 함량 중 nss-$SO_4^{2-}$ 함량은 78%로 강우 중에 함유된 sulfate의 대부분이 인위적인 발생원에서 기인되었으며, 월별로는 9월까지 점차 낮아지다. 10월에 다시 높아지는 계절적 변이를 보였다.

The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October in 2005 were investigated at Taean. Also, to estimate the contribution of ions on acidity, ion composition characteristics and neutralization effects by cations were determined. The electrical conductivity balance between measured and estimated values showed a high correlation. Rainwater was highly distributed in the range of pH $4.5{\sim}5.0$. The acidity of rainwater was relatively low during the month of June compared with other monitored periods. $Na^+$ was the main cation, followed by $H^+>Ca^{2+}>NH_4^+>K^+>Mg^{2+}$. Among these ions, $Na^+,\;NH_4^+,\;Ca^{2+}$ and $H^+$ comprised over 94% of the total cations. Rainwater anion composition was more than 80% with $SO_4^{2-}$ and $NO_3^-$. In rainwater samples, $NH_4^+$ and $Ca^{2+}$ contributed greatly to neutralizing the rain acidity. The sulfate content decreased until September, and sea salt derivatives were higher in May and October than during other monitored periods. Also, 78% of the soluble sulfate in rainwater was nss-$SO_4^{2-}$ (non-sea salt sulfate).

키워드

참고문헌

  1. Charron, A., H. Plaisance, S. Sauvage, P. Coddeville, J. C. Galloo, and R. Guillerm, 2000: A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France. Atmospheric Environment 34, 3665-3674 https://doi.org/10.1016/S1352-2310(00)00096-0
  2. Christian, E. J., 1963: Air chemistry and radioactivity. Academic Press, 327-330
  3. Contardi, V., E. Franceschi, S. Bosio, G. Zanicchi, D. Palazzi, L. Cortessogno, and L. Gaggero, 2000: On the conservation of architectural artistic handwork of the 'Pietra di Finale'. Journal of Cultural Heritage 2, 83-90
  4. Cronan, C. S., and C. L. Schofield, 1979: Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the Northeast. Science 204(20), 304-306 https://doi.org/10.1126/science.204.4390.304
  5. Fujita, S. I., A. Takahashi, J. H. Weng, L. F. Huang, H. K. Kim, C. K. Li, F. T. Huang, and F. T. Jeng, 2000: Precipitation chemistry in East Asia. Atmospheric Environment 34, 525-537 https://doi.org/10.1016/S1352-2310(99)00261-7
  6. Galloway, J. N., D. Zhao, J. Xiong, and Likens G. E., 1987: Acid rain: China, United States, and a remote area. Science 236, 1559-1562 https://doi.org/10.1126/science.236.4808.1559
  7. Jakobowicz, J. M., 1994: Acid Rain-An Issue for Regional Cooperation. Gordon & Breach Science Publishers, 129-156
  8. Johnston, J. W., D. S. Jr. Shriner, C. I. Klarer, and Lodge D. M., 1982: Effect of rain pH on senescence, growth, and yield of bush bean. Environmental and Experimental Botany 22(3), 329-337 https://doi.org/10.1016/0098-8472(82)90025-9
  9. Johnston, D. W, and G. E. Taylor, 1989: Role of air pollution in forest decline in eastern north America. Water, Air, and Soil Pollution 48, 21-43
  10. Kondo, J., 1991: The ozone hole problems. Proceedings of the 2nd IUAPPA Regional Conference on Air Pollution 1, 17-22
  11. Lee, J. S., G. B. Jung, J. H. Kim, W. I. Kim, S. G. Yun, and J. C. Im, 2001: Volume-weighted ion concentration of rainwater in Taean area. Korean Journal of Environmental Agriculture 20(4), 284-288. (in Korean with English abstract)
  12. Lee, J. S., G. B. Jung, J. D. Shin, and J. H. Kim, 2004: Chemical properties of rainwater in Suwon and Taean area during farming season. Korean Journal of Agricultural and Forest Meteorology 6(4), 250-255. (in Korean with English abstract)
  13. Lee, J. S., Y. K. Jung, and K. S. Lee, 1999: Chemical composition of rainwater in Taean area. Korean Journal of Environmental Agriculture 18(3), 204-208. (in Korean with English abstract)
  14. Lee, J. S., B. Y. Kim, K. D. Woo, and G. B. Jung, 1993: Study on histological pertubations of leaves of sesame after exposure to simulated acid rain. Journal of Korean Society of Soil Science and Fertilizer 26(4), 308-313. (in Korean with English abstract)
  15. Lee, J. S., and K. S. Lee, 2000: Neutralization assessment of $NH_4\/^+$ and $Ca^{2+}$ on acidity of rainwater in Korea. Korean Journal of Environmental Agriculture 19(1), 72-74. (in Korean with English abstract)
  16. Likens, G. E., J. N. Galloway, and T. J. Butler, 1979: Acid rain. Scientific American 241(4), 39-47
  17. Okochi, H., H. Kameda, S. Hasegawa, N. Saito, K. Kubota, and M. Igawa, 2000: Determination of concrete structures by acid deposition - An assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmospheric Environment 34, 2937-2945 https://doi.org/10.1016/S1352-2310(99)00523-3
  18. Park, S. U., Y. H. Lee, and H. J. In, 2000: Estimation of wet deposition of sulfate using routinely available meterological data and air-monitored data in Korea. Atmospheric Environment 34, 3249-3258 https://doi.org/10.1016/S1352-2310(00)00099-6
  19. Peart, M. R., 2000: Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong. Chemosphere 41, 25-31 https://doi.org/10.1016/S0045-6535(99)00386-0
  20. Rinallo, C., 1992; Effects of acidity of simulated rain on the fruiting of 'summerred' apple trees. Journal of Environmental Quality 21, 61-68 https://doi.org/10.2134/jeq1992.00472425002100010009x
  21. Scorer, R. S., 1994: Long Distance Transport. Acid Rain. Gordon & Breach Science Publishers, 1-34
  22. Taniyama, T., and H. Saito, 1981: Effects of acid rain on apparent photosynthesis and grain yield of wheat, barley and rice plant. Report of Environmental Science Mie University 6, 87-101
  23. Volker, A. M., 1988: The challenge of acid rain. Science American 259(2), 14-22