JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DEGEMBER 2007(pp. 1539-1550)

XML Type vs Inlined Shredding into Tables for
Storing XML Documents in RDBMS

Min Jin', Minjun Seo”

ABSTRACT

As XML is increasingly used for representing and exchanging data, relational database systems have
been trying extend their features to handle XML documents. XML documents can be stored in a column
with XML data type like primitive types. The shredding method, which is one of the traditional methods
for storing and managing XML documents in RDBMS, is still useful and viable although it has some
drawbacks due to the structural discrepancy between XML and relational databases. This method may
be suitable for data-centric XML documents with simple schema. This paper presents the extended version
of the Association inlining method that is based on inlined shredding and compares the performance of
querying processing to that of XML type method of conventional relational database systems. The
experiments showed that in most cases our method resulted in better performance than the other method
based on XML data type. This is due to the fact that our shredding method keeps and uses the order
and path information of XML documents. The path table has the information of the corresponding table
and column for each distinct path and the structure information of the XML document is extracted and

stored in data tables.

Keywords: Inlined Shredding, Extended Association Inlining, XML Type, XQuery

1. NTRODUCTION

XML was originally developed as a simplified
form of SGML, a mark up language with simple
syntax and extendible vocabulary. It has become
a de facto standard for representing and exchang-
ing data on the Internet and in business applica-
tions. In recent years, several approaches have
been developed for managing XML data. These can
be classified into two groups: native XML data

management systems such as Timber, Niagara,

¥ Corresponding Author : Min Jin, Address : (631-701)
449 Wolyoung-dong, Masan, Kyungnam, S. Korea, TEL
: +82-55-249-2653, FAX : +82-55-248-2554,
E-mail : mjin@kyungnam.ac.kr
Receipt date : May. 31, 2007, Approval date : Oct. 10, 2007
* Div. of Computer Science and Engineering, Kyungnam
University
** Div. of Computer Science and Engineering, Kyungnam
University
(E-mail : mjseo@kyungnam.ac.kr)
This work was supported by Kyungnam University
Foundation Grant, 2006.

and Natix, and conventional relational database
systems([1]. The latter group is within the scope
of this paper. There are three ways for storing
XML data in relational database systems. First,
XML data is stored as a CLOB(character large ob-
ject) supporting text fidelity[1]. The original struc-
ture of the XML document is maintained in this
scheme. It allows fast insertion and retrieval of full
XML documents, but suffers from poor search of
the documents and retrieval of partial documents
due to the fact that parsing is required at every
query execution.

Second, XML documents are shredded into rela—
tional tables supporting relational fidelity. The hi-
erarchical structure of the document is broken into
flat tables. The most significant disadvantage of
shredding is that the characteristics of the original
XML document such as hierarchy and order can
be lost in the process of shredding due to the struc—
tural discrepancy between XML and relational
database. In fact, there is no published algorithm

1540 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

for translating simple path expression queries into
SQL when the XML schema is recursive. It be-
comes worse when the XML schema is very large
and complex, and tables may have many null val-
ues when the XML document is sparse. The sec-
ond disadvantage is that the insertion of XML
documents takes a long time when shredding XML
documents into relational tables due to the costly
parsing that includes multitable inserts. The third
disadvantage is the difficulty of reconstruction of
the original full XML document without special
facilities. It is also difficult to extract subparts of
the document in some cases. The fourth dis-
advantage is that it is difficult to support schema
evolution since data are scattered among tables.
The shredding method has some advantages.
The first advantage is that modifications to the
conventional relational engine are not required and
the existing features of the engine can be used. No
extensions to existing facilities are needed for
managing XML documents. Once XML documents
are broken into flat tables, conventional SQL can
be used in querying the data. The second one is
that some queries could be supported conveniently
by using relational tables. Relational database
users feel comfortable with this method since they
are accustomed to using flat tables and SQL. The
third one is that most application tools such as data
mining and business intelligence are developed
based on relational tables. These programs can be
applied to this method without reprogramming.
Third, a native data type is defined for XML
documents in the relational database supporting
XML fidelity. They are stored in a column with
XML data type and treated the same as primitive
data types such as integer, char, and decimal. The
SQL-2003 standard provides a new data type
called XML for storing XML documents and
fragments. SQL/XML is an extension of SQL that
is part of SQL 2003[2]. Recently relational database
vendors such as IBM, Oracle, and Microsoft have
provided extended facilities for interacting and

managing XML documents[1,3-8). These database
systems store XML documents in XML data types.
An index can be created to expedite query
processing. SQL Server 2005 provides a mecha-
nism for indexing the XML datal6,9,10]. It contains
the structural information including the hier—
archical relationships among XML nodes and the
document order. The size of the index necessary
for providing smooth access to the data is several
times that of the original XML document.
Relational database vendors continue to extend
their facilities to support two standards for manag-
ing XML documents: SQL/XML and XQuery.
SQL/XML is SQL-centric while XQuery is XML~
centric.

In sum, the shredding method is still useful and
viable although it has some drawbacks compared
to the XML data type based approach. This method
might be good for data-~centric XML documents
with simple schema. Hence, this paper presents a
comparison of query processing between the
shredding method and the XML data type based
method in conventional database systems. The ex-
periment is conducted on possible patterns of
queries. The shredding method used in this paper
is the extended version of the association inlining,
which combines the join reduction properties of
hybrid inlining and sharing features of shared in-
lining[11]. It leads to the reduction of both rela—
tional fragments and excessive joins compared to
both inlining methods.

The rest of this paper is organized as follows.
Section 2 reviews related work concerning the
storage of XML documents in relational databases.
Section 3 describes the extended association inlin-
ing method. Section 4 shows the result of experi~
ments on possible query patterns. Section 5 offers

conclusions.

2. RELATED WORK

There are two scenarios in XML and relational

XML Type vs Inlined Shredding into Tables for Storing XML Documents in RDBMS 1541

database systems; XML publishing and XML
storage. The former aims to publish data stored in
RDBMS in XML format, treating the data as XML
documents and the latter aims to store XML docu-
ments in RDBMS[11-17]. There are three ways of
storing XML documents in RDBMS; text fidelity,
relational fidelity, and XML fidelity.

Shredding, which provides relational fidelity, can
be classified into two approaches: the Model map-
ping approach and the Structure mapping ap-
proach{18]. The Model mapping approach deals
with the storage of XML documents without
structural information, such as DTD and XML
schema. Relational schemas are defined regardless
of the structural information of the given XML
document. In contrast to the Model mapping ap-
proach, the Structure mapping approach deals with
storing XML documents with structural in-
formation such as a DTD or an XML schema. The
relational tables are generated based on the struc—
tural information extracted from the DTD or the
XML schema. There are three methods for this,
called basic inlining, shared inlining, and hybrid in-
lining[11]. The association inlining method com-
bines the join reduction properties of hybrid inlin-
ing with the sharing features of shared inlining[19].
The most important characteristic of the associa-
tion inlining method is the path table. The path ta-
ble, which contains all possible paths from the root
to each node, is constructed and used in both pop-
ulating the data into the tables and processing
queries. The experiment showed that association
inlining had 92.21% lower joins than that of shared
inlining. The number of subqueries per query is
88.05% lower than that of hybrid inlining. These
reduction rates depend on the characteristics of the
document.

As XML is increasingly being used in data proc-
essing environments, relational database systems
such as DB2, Oracle, and SQL Server have been
trying to extend their features to handle XML
documents[20-22]. The SQL-2003 standard pro-

vides a new data type called XML for storing
well-formed XML documents and fragments based
on the XML Infoset and XQuery data model.
Columns, variables ‘and parameters can have XML
types like primitive types.

SQL/XML and XQuery are two standards that
use declarative queries to access data to be re-
turned in XML format. SQL/XML extensions allow
publishing relational data in XML format at an ar-
bitrary level of XML documents, by providing
functions that operate like XPath and XQuery, in—
side SQL statements[2]. This is being supported
by Oracle and IBM. SQL Server provides ven-
dor-specific methods for this purposel3].

SQL Server 2005 stores XML documents in in-
ternal binary format as BLOBs. A primary index
can be created to avoid parsing the XML BLOBs
at each query time. And additional secondary in-
dexes can be created for improving processing per—
formance of path-based queries, property—based
queries, and value-based queries[9,10,20]. SQL
Server 2005 provides query and modification capa-
bilities using query methods on the XML data type
that accept the XQuery[10]. It also provides XML
schema collection as a mechanism for managing
XML schema documents as metadata.

DB2 introduces a native XML storage format to
avoid parsing at every query time. It stores XML
documents as instances of the XQuery data model,
in a structured type-annotated tree. Unlike SQL
server 2005, XML parsing is not required at query
time. Indexes can be defined on specific paths. As
every node of an XML document has type in-
formation, it could easily support schema evolu-
tion[1,8].

Oracle treats the XML data type as a logical ab—
straction over a variety of physical storage forms;
CLOB, hybrid, shredding, and binary XML for-
matl[4,22]. In binary XML type representation, the
data is encoded in its native typed format. The
XML tree can be broken into disjoint fragments

in a native fashion via the notion of section

1542 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

references. The XML data represented in binary
format can be stored in one or more tables with
BLOB columns. This is different from shredding,
in that the table schema is decoupled from XML
schema. Hence, there are many-to-one mappings
of XML tree fragments to binary XML tables.

3. EXTENDED ASSOCIATION INLINING

3.1 A Path Table and Data Tables

We use an extended version of Association in-
lining as a shredding method. The main character-
istics of the method are as follows.

First, the structural information of the XML
document such as the order of the nodes and hi-
erarchical relationship among nodes is represented
in the table. In the stage of shredding XML docu-
ments into relational tables, the order of nodes
and the hierarchical relationships among nodes
are revealed. This information is captured and
kept in the data tables and reflects the fidelity of
the XML document structure. Second, the path
table is also extended. It contains the type of the
rightmost node of the path from the root to the
node. Third, the data tables and path tables are
more tightly integrated in the population of dada
and query processing. The example XML docu-
ment is shown in Fig. 1 and the order of nodes
is shown in Fig. 2.

<BOOK ISBN="1-55860-438-3">

<SECTION>

<TITLE>Bad Bugs</TITLE>
Nobody loves bad bugs.

<FIGURE CAPTION="Sample bug"/>

</SECTION>

<SECTION>

<TITLE>Tree Frogs</TITLE>

All right-thinking people

<BOLD>love</BOLD>tree frogs.

</SECTION>

</BOOK>

Fig. 1. XML Data.

e <SECTION™
1.3. 1.3.5 1.5.1 1.5.3
CTLE> FIGURE™ (TITLE
1.3.5.1
CAPTION

Fig. 2. ORDPATH Node Label used in(9).

Fig. 3 shows the path table, which contains
paths from every node to the root. This information
is mostly based on the XML schema information.
However, for recursive cases, it also depends on
XML document occurrences, since there is no pub-
lished mechanism for translating XML to SQL.
The delimiter 4" is added to use the Like clause
of SQL. Table and column indicate the relational
table and column that correspond to the last node
on the path expression from the root to the node.

pathID pathExp nodeType table column | parentCode | lastnode
1 #/BOOK element book NULL NULL BOOK
2 #/BOOK#/@ISBN attribute book ISBN NULL ISBN
3 #/BOOK#/SECTION element section NULL book SECTION
4 #/BOOK#/SECTION#/ text section.text | text section SECTION
5 #/BOOK#/SECTION#/TITLE element section title hook TITLE
~ 6 #/BOOK#/SECTION#/FIGURE element NULL NULL NULL FIGURE
7 #/BOOK#/SECTION#/FIGURE#/@CAPTION | attribute section caption book CAPTION
8 #/BOOK#/SECTION#/BOLD element section;t bold book BOLF

Fig. 3. Path table.

XML Type vs Inlined Shredding into Tables for Storing XML Documents in RDBMS 1543

Book
iD |doclD | parentlD |parentCode ISBN elementOrd order | nested | pathlD
1 1 NULL NULL 1-55860-438-3 1.1 1 NULL 1
Section
ID | docID | parentID |parentCode title caption bold |elementOrd | order |nested| pathID
1 1 1 book Bad Bugs | Sample bug | NULL 1.3 1 [NULL 3
2 1 1 book Tree Frogs NULL love 15 2 |NULL| 3
Section.text
ID |doclD | parentID |parentCode text elementOrd order nested | pathiD
1 1 1 section Nobody loves bad bugs. 1.3 1 NULL 4
2 1 2 section All right-thinking people 15 1 NULL 4
3 1 2 section tree frogs. 15 2 NULL 4

Fig. 4. Tables for storing the XML document in Fig. 1.

The nodeType represents the node type of the last
node of the path from the root. ParentCode in-
dicates the parent table in the hierarchy of rela-
tional tables for accommodating the hierarchical
relationships between nodes. Lastnode indicates
the last node on the path expression from the root
to the node. It is indexed to expedite getting table
information for path expressions. When the table
and column columns are both not NULL, the path
is final; there are no more nodes to move along
the path.

The data tables are shown in Fig. 4. Book and
Section elements are represented as separate
tables. The text for the section element is repre-
sented as a separate table, under the name
Section.text. Some elements such as title and bold
are represented as columns of a table. The figure
element appears as neither a table nor a column.
Each column except the meta-columns for the
structural information has the corresponding order
number represented in the Dewey Order Encoding
method[16,23]. The order information of a node is
represented in the elementOrd column of the table.
The order column indicates the occurrence order

of the same element, attribute, or text within an

element. The hierarchical relationship among no-
des is represented via parentCode and parentID.
The parentCode column indicates the parent table
of the row and parentID indicates the parent row
in the parent table. The nested column indicates
whether or not the row is recursively created. The
pathID column represents the path which causes
a row to be generated in the table. This value helps
disambiguate between rows that are created in the
same table, but their paths may be different. This
value is brought from the pathID column of the
path table. Here, it is represented as a con-—
catenation of numbers which mean the corre-
sponding nodes separated by ‘# in reverse order.

Some nodes such as element-only elements and
elements with inlinable sub—nodes don’t appear in
the data table. Hence the corresponding order may
be missing. In order to keep the complete order of
an XML document, the missing value should be
collected and stored. Fig. 5 shows the missing or-
der of the XML document.

docID path pathID
1 #/book#/section#/figure 6

order
1.35

Fig. 5. Missing order of the XML document in Fig. 2.

1544 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

’—",,; T R
S b Xauer auey |
i T mapping
L P eble T omaion | #]_ Xaue Parser
! XQuery tree
- -—SQls - XQuery Translat;ﬂ 1
Tables for XML dath ML template
resulting - .
j—— tuples V—WRECTWS"UMW, |

. .
. oy

| XML Document
S ﬁ_/fr——\.‘

Fig. 6. Architecture for processing of XQuery query.

3.2 Translating XQuery into SQL

The overview of our system for translating
XQuery into SQL and reconstructing XML docu-
ments in XML format is shown in Fig. 6.

An XQuery query such as the one in Fig. 7 is
parsed and decomposed into an XQuery Tree,
which is translated into SQL and an XML
template.

The mapping information in the Path table is ex—
ploited in creating the XQuery tree and the XML
template. The outline of the algorithm for getting
the mapping information from the Path table is de-
scribed in Fig. 8.

For $b in /BOOK/[@ISBN="1-55860-438-3"]
Where $b/SECTION/TITLE/text()="Bad Bugs”
Return
<BOOK>
<SECTION>$b/SECTION/text()</SECTION>
</BOOK>

Fig 7. An XQuery query.

The XQuery translator takes an XML query tree
as input and translates it into SQL. The outline of
the algorithm for translating XQuery queries into
SQL is described in Figure 9. Figure 10 shows the
SQL query translated from the XQuery query of
Fig. 7.

4. EXPERIMENTS

We executed some typical types of queries on
the XMark data set[24] by using both the shred-
ding method and the XML type in SQL Server,
DB2, and Oracle. The size of the original XML
document used is 115,775KB for scale factor 1.0.
We used the extended association inlining as a
shredding method. The number of generated tables

GetTable(exp, table, column, pathID) {

// Output: table, column, pathID
select table, column, pathIlD

from Path

where pathExp = exp

if (table is null and column is null) {

select pathExp
from Path
where pathExp = exp + ‘#%’
for each exp
GetTable(exp, table, column, pathID)

// Input: exp, which is a fragment of path expressions

// When the element is not mapped to a table, it is an element-only element

Fig. 8. The the algorithm for getting the mapping information from the Path table.

XML Type vs Inlined Shredding into Tables for Storing XML Documents in RDBMS 1545

Algorithm tranlating XQuery into SQL
Input:
N: Nodes of XQuery tree
Output: SQL query sql
Begin
Let N be the root node in XQuery Tree.
parentTables=""
SelectWhere=""! FromClause="": WhereClause="": OrderByClause=""
XQuerytoSQL(N, parentTables)
sal="SELECT "+SelectClause+” FROM "+FromClause+” WHERE "+WhereClause
Return sqgl
End
Procedure XQuerytoSQL(Node of XQuery Tree N, parentTables)
Begin
If Nuype is "For” or "Let” then
If N is root node then
FromClause=FromClause V Nepie
WhereClause=WhereClause V Nigpiet” pathID"+" IN ("+Nparup+”)”
parentTables=parentTables V Nupie
End If
End If
If Nipe is "Predicate” or "Where” then
WhereClause=WhereClause V Nuste. NeotunnNperdicate
If Niupie isn’t the element of parenTables then
If Nparenttavie is the element of parentTables then
FromClause=FromClause V Niaie
WhereClause=WhereClause V Nparentrapie+" . ID="+ Niaie+" parent]D”
WhereClause=WhereClause V Nisie+” . pathID”+" IN ("+Nparp+”)"
parentTables=parent Tables V Nupie
Else
FromClause="(SELECT elementOrd,)+SelectClause+” FROM ”+FromClause+” WHERE "+WhereClause+")
"+Alias 7"+ Nabie
WhereClause=Nuwsie+".elementOrd BETWEEN “+Alias+".clementOrd AND Descendants("+Alias+".elementOrd)”
parentTables=parent Tables V Nuie
End If
End If
End K
If Niype is "OrderBy” then
OrderByClause=OrderByClause V " Nigsie.N cotumn”
End If
If Niype="Return” then
If Newsie is the element of parenTables then
SelectClause=SelectClause A Niavie. Neotumn
Else If Nparewstarie is the element of parentTables then
FromClause=FromClause V N
WhereClause=WhereClause V Nparentrapie+” ID="+ Ngsie+" .parentID”
WhereClause=WhereClause V Nupie+” pathID”+" IN "+ Npanp+")"
parentTables=parentTables V N
Else
FromClause="(SELECT elementOrd,)+SelectClause+” FROM "+FromClause+” WHERE "+WhereClause+") "+Alias”,"+Nusie
WhereClause=Nupie+” clementOrd BETWEEN "+Alias+" elementOrd AND Descendants("+Alias+".elementOrd)”
parentTables=parentTables V Nubze
End If
End If
For each child node of N do
XQuerytoSQL(N, parentTable)
End For
End

Fig 9. The outline of the algorithm for translating XQuery queries into SQL.

1546 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

SELECT section.text.text
FROM book, section, section.text

WHERE book.id=section.parentid AND book.pathid=1 AND section.id=section.parentid AND section.pathid=3
AND book ISBN="1-55860-438-3" AND section title="Bad Bugs”

Fig. 10. SQL query corresponding to XQuery query of Fig. 7.

was 18, the total number of rows was 906,443, and
the total amount of tables was 364,192KB. We used
an 1800MHz AMD Athlon XP processor with 1GB
of main memory running Windows 2003. The data-
base platform used was Microsoft SQL Server
2005. Some of the queries which were used in our
experiments were taken from [24]. The classi-
fication of queries is not complete and not pair-
wise disjoint, they can overlap. Constructing com-
plex results and reconstructing fragments queries
are not included in the experiment since these are

not fully supported in our scheme.

4.1 Queries
(1) Exact match

Q1: for $b in /site/people/person] @id="personl11"]
return $b/name/text()
The translated SQL of Q1 in our scheme is as
follows:
SELECT name FROM Person WHERE id =
‘personlll’ AND pathID = 413
Q2: for $b in/site/closed_auctions/closed_auc-
tion/annotation/description/parlist/listitemn/
text/keyword
return <keyword>{$b/text()}</keyword>

(2) Selection

Q3: for $b in /site/people/person where $b/pro-
file/age > 40
return $b/name/text()

(3) Containment

Q4: for $b in //item[@id="item0”] return $b//
text/text()
The following is the corresponding SQL.

SELECT Text.text
FROM (SELECT elementOrd FROM Item
WHERE id = 'itemQ’ AND pathID IN
(4, 65,126, 187, 248, 309)) A, Text
WHERE Text.elementOrd BETWEEN
A.elementOrd
AND dbo.Descendants(A.elementOrd)
Q5: for $b in //keyword return <keyword>
{$b/text()}</keyword>
Q6: for $b in /site/regions/*/item return <item
id="{$b/@id}" />

(4) Ordered access

Q7: for $b in /site/open_auctions/open_auction
return <increase>{$b/bidder[1)/increase/
text()}</increase>

The corresponding SQL of Q5 in our scheme is

as follows.

SELECT Bidder.increase

FROM (

SELECT * FROM Open_auction
WHERE doclD = "1’ AND pathID = 438
) A, Bidder

WHERE Bidder.[order] = 1 AND A.id = Bidder.

parentID

AND Bidder.parentCode = 'open_auction’

(5) Path traversal

Q8: for $b in /site/regions/australia/item
return <item name= "{$b/name/text()}”>
</item>

(6) Number of occurrences

Q9: for $b in /site/regions return count($h//it-
em)
SELECT COUNT(*) FROM Item WHERE

XML Type vs Inlined Shredding

pathID IN (4, 65, 126, 187, 248, 309)
Q10: for $b in /site/regions/australia return
count($b/item)

(7) Join on ID

Q11: for $b in //closed auction/buyer, $¢ in
//person
where $b/@person = $c/@id

return <name>{$c/name/text()}</name>

(8) Join on values

Q12: for $b in //person, $c in //open_auction
where $b/profile/@income < $c/current
return <person name="{fn:distinct-values
($b/name/text())}"” />

The translated SQL is as follows.

SELECT DISTINCT A.name

FROM (SELECT #* FROM Person WHERE

pathID = 413) A,
(SELECT * FROM - Open_auction
WHERE pathlD = 438) B
WHERE A.income < B.current

(9) Missing elements/attributes

Q13: for $b in //person

into Tables for Storing XML Documents in RDBMS 1547

where empty($b/homepage/text())
return <person name="{$b/name/text()}"
/>

4.2 Results of Experiments

The storage amount of the XML document in
SQL Server is 172,172KB. The size of primary in-
dex and three secondary indexes is 404,188 KB and
612,141 KB respectively for the scale factor 1.0.
The amount of the primary index is usually three
times that of the XML data in the table[20].
XQuery is used for querying over XML documents
stored using the XML data type. In general, shred-
ding is obviously not a feasible option when the
XML schema is very large and complex, resulting
in thousands of tables and not complete and sound
mapping. However, it is a competitive alternative
when the schema is simple and the XML document
is data—centric. Table 1 and Table 2 show the time
of processing queries in both the extended inlined
shredding and XML type. The cost of parsing and
building index in XML type and constructing path
table in our method is not taken into consideration.
The experiments demonstrate that the performance

Table 1. Query performance(ms) for XMark queries for scale factor 0.1

Extended SQL Server DB2 Oracle
Query | Inlined) Selz;fézg and 1 TmAY) No index Index No ndex
Q1 166 808 3,218 1,178 78 66,230
Q2 101 400 269 1,062 211 24,660
Q3 15 3,599 375 1,208 172 28,920
Q4 61 1,195 769 2,647 531 62,200
Q5 371 43,125 917 1,779 253 42,530
Q6 97 32,148 800 637 234 50,480
Q7 57 206 368 1,488 1,063 84,070
Q8 4 172 254 463 188 22,840
Q9 3 66 276 468 172 37,120
Q10 5 37 220 359 15 22,390
Q11 166 8,335 545,488 508,510 824,219 46,430
Q12 602 3,074,942 1,202,125 1,777,277 2,210,687 >1h
Q13 117 6,602 606 1,032 1,297 38,170

1548 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

Table 2. Query performance(ms) for XMark queries for scale factor 1.0

Extended SQL Server DB2

uer Inlined i Pri

Q1 56 3,955 19,343 6,702 1,125
Q2 338 17,388 1,968 9,999 >1h
Q3 198 180,375 3,518 11,609 2,172
Q4 7322 9,015 6,319 41,926 18,562
Q5 2,615 2,670,115 7,878 17,103 >1h
Q6 315 1,309,335 55521 5,604 >1h
Q7 4724 5,089 4,101 12,388 11,406
Q3 104 11,026 3,233 3,183 1,766
Q9 21 80 2,656 4,223 2,313
Q10 23 56 5,239 2,999 15
Q11 683 431,660 >1h >1h >1h
Q12 37,590 >1h >1h >1h >1h
Q13 485 175,107 10,801 9,567 13,641

of processing queries of the shredding method is
better than that of XML type in all cases in the
experiment. The performance improvement of the
extended inlined shredding in query processing is
originated from the reduction of joins. By storing
and exploiting the order information of elements as
mentioned in section 3, the number of joins de-
ceases in processing queries such as A//E.
However, our scheme is inferior to the XML type
method for queries that extract fragments of ele-
ments or construct complex results. There are dif-
ferences in the performance among SQL Server,
DB2, and Oracle. These are due to the fact that
representation and indexing mechanism of XML
type are different depending on the system. The
performance of Oracle for the scale factor 1.0 is
left out in the Table 1 since it can not be measured

within one hour for the given queries.

5. CONCLUSION

We presented a comparison of the performance
of processing queries between shredding and XML
type for storing XML documents in relational

databases. Relational DBMS such as SQL Server,
IBM DB2, and Oracle have been extending their
facilities to accommodate storing and managing
XML documents. XML documents can be stored
like a primitive type in a table. Index structures
are provided to expedite access to the documents.
The shredding method which is one of the conven—
tional methods of storing XML documents in
RDBMS is still a viable alternative even though
it has some drawbacks due to the structural dis—
crepancy between them. The experiments showed
that in most cases the extended version of the
Association inlining method had better perform-—
ance than the other method based on XML type.
This is due to the fact that our shredding method
keeps and uses the order and path information.
The results of the experiment lead to a hybrid
method in which both shredding and XML type are
used together for storing XML documents in the
RDBMS. Shredding is used on the part of XML
documents with simple XML schema without re—
cursion, while the XML data type is used for XML
documents with complex and complicated schema.
Translation of queries with XQuery into SQL is

XML Type vs Inlined Shredding into Tables for Storing XML Documents in RDBMS 1549

still an ongoing issue in the shredding method. The
support of schema evolution is also required for the
shredding method to be a competitive alternative
in storing XML documents in relational databases.

REFERENCES

[1] K.S. Beyer, R. Cochrane, M. Hvizdos, V.
Josifovski, J. Kleewein, G. Lapis, G.M.
Lohman, R. Lyle, M. Nicola, F. Ozcan, H.
Pirahesh, N. Seemann, A. Singh, T.C. Truong,
R.C. Van der Linden, B. Vickery, C. Zhang,
and G. Zhang, “DB2 goes hybrid: Integrating
native XML and XQuery with relational data
and SQL,” IBM Systems Journal, Vol.45, No.
2. pp. 271-298, 2006.

[2] A. Eisenberg and J. Melton, “Advancements
in SQL/XML.” SIGMOD Record, Vol.33,
No.3. pp. 79-86, 2004.

[31] S. Klein, Professional SQL Server 2005 XML,
Wrox Press, 2006.

[4] R. Murthy, ZH. Liu, M. Krishnaprasad, S.
Chandrasekar, A. Tran, E. Sedlar, D. Florescy,
S. Kotsovolos, N. Agarwal, V. Arora, and V.
Krishnamurthyet, “Towards an Enterprise
XML Architecture,” Proceedings of the ACM
SIGMOD International Conference on Man—
agement of Data, pp. 953-957, 2005.

[5] M. Nicola and B.V. Linden, “Native XML
Support in DB2 Universal Database,” Pro-
ceedings of the 31" VLDB Conference, pp.
164-1174, 2005.

[6] M. Rys, “XML and Relational Database
Management Systems: Inside Microsoft SQL
Server 2005, Proceedings of the ACM
SIGMOD International Conference on Man-
agement of Data, pp. 958-962, 2005.

[7]1 M. Rys, D.D. Chamberlin, and D. Florescu,
“XML and Relational Database Management
Systems: The Inside Story,” Proceedings of
the ACM SIGMOD International Conference
on Management of Data, pp. 945-947, 2005.

[8] P.G. Selinger, “Information Integration and
XML in IBM’s DB2,” Proceedings of the 28"
VLDB Conference, pp. 906-907, 2002.

[9]S. Pal, I. Cseri, G. Schaller, O. Seeliger, L.
Giakoumakis, and V.V. Zolotov, “Indexing
XML Data Stored in a Relational Database,”
Proceedings of the 30™ VLDB Conference,
pp. 1134-1145, 2004.

[10] S. Pal, I. Cseri, O. Seeliger, M. Rys, G.
Schaller, W. Yu, D. Tomic, A. Baras, B. Berg,
D. Churin, and E. Kogan, “XQuery Implemen-—
tation in a Relational Database System,”
Proceedings of the 31" VLDB Conference,
pp. 1175-1186, 2005.

[11] J. Shanmugasundaram, K. Tufte, G. He, C.
Zhang, D. Dewitt, and J. Naughton, *
Relational Databases for Querying XML
Documents: Limitations and Opportunities,”
Proceedings of the 25" " VLDB Conference,
pp. 302-314, 1999.

[12] M. Fernandez, Y. Kadiyska, A. Morishima, D.
Suciu, and W.C. Tan, “SilkRoute: A Frame-
work for Publishing Relational Data in XML,”
ACM Transactions on Database Systems pp.
438-493, 2002.

[13] R. Krishnamurthy, R. Kaushik, and]J.F.
Naughton, “XML-to-SQL Query Translation
Literature: The State of the Art and Open
Problems,” The 1 International XML Data-
base Symposium, pp. 1-18, 2003.

[14] J. Shanmugasundaram, J. Kiernan, E. Shekita,
C. Fan, and J. Funderburk, “Querying XML
Views of Relational Data,” Proceedings of the
27" VLDB Conference, pp. 261-270, 2001.

[15] J. Shanmugasundaram, E. Shekita, R. Barr, M.
Carey, B. Lindsay, H. Pirahesh, and B.
Reinwald, “Efficiently Publishing Relational
Data as XML Documents,” Proceedings of
the 26™ VLDB Conference, pp. 65-76, 2000.

[16] 1. Tatarinov, S. Viglas, K.S. Beyer,]J.
Shanmugasundaram, E.J. Shekita, and C.
Zhang, “Storing and Querying Ordered XML

1550 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 10, NO. 12, DECEMBER 2007

Using a Relational Database System,” ACM
SIGMOD Conference, pp. 204-215, 2002.

[17] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo,
and G.M. Lohman, “On Supporting Contain-
ment Queries in Relational Database Manage-
ment Systems,” ACM SIGMOD Conference,
pp. 425-436, 2001.

[18]1 M. Yoshikawa and T. Amagasa, “XRel: A
Path-Based Approach to Storage and Re-
trieval of XML Documents Using Relational
Databases,” ACM Transactions on Internet
Technology, Vol.1, No.l. pp. 110-141, 2001.

[19] B.J. Shin and M. Jin, “Association Inlining for
Mapping XML DTDs to Relational Tables,”
Proceedings of the 2004 International Con—
ference on Computational Science and its
Applications, pp. 849-858, 2004.

[20] Microsoft SQL Server 2005. In http//www.
microsoft.com.

[21] IBM DB2. In http://www.ibm.com.

[22] Oracle Database. In http://www.oracle.com.

[23] P.E. O'Neil, E.J. O'Neil, S. Pal, I. Cseri, G.
Schaller, and N. Westbury, “ORDPATHs:
Insert-Friendly XML Node Labels,” Pro-
ceedings of the ACM SIGMOD Internatio-
nal Conference on Management of Data, pp.
903-908, 2004.

[24] A. Schmidt, F. Waas, M.L. Kersten, M.]J.

Carey, 1. Manolescu, and R. Busse, “XMark:
A Benchmark for XML Data Management,”
Proceedings of the 28 " VIDB Conference,
pp. 974-985, 2002.

Min Jin

Ile received the B.S degree in
computer science and statistics
from Seoul National University
in 1982, and the M.S degree in
computer science from KAIST
in 1984, and the Ph.D. degree in
computer science and engineer—
ing from the University of Connecticut in 1997. He has
been working at Kyungnam University since 1985. He
is currently a professor in the division of computer sci—
ence and engineering. His research interests include
data modeling, object-oriented database, XML storage
and processing, and data mining.

Minjun Seo

He received the B.S degree in
computer
Kyungnam University in 2006.
He is a Master student at
Kyungnam University. His re-
search interests are database,
data modeling, and XML.

engineering from

