DOI QR코드

DOI QR Code

Design and Assessment of an Ozone Potential Forecasting Model using Multi-regression Equations in Ulsan Metropolitan Area

중회귀 모형을 이용한 울산지역 오존 포텐셜 모형의 설계 및 평가

  • Kim, Yoo-Keun (Department of Atmospheric Sciences, Pusan National University) ;
  • Lee, So-Young (Department of Atmospheric Sciences, Pusan National University) ;
  • Lim, Yun-Kyu (Department of Atmospheric Sciences, Pusan National University) ;
  • Song, Sang-Keun (Department of Atmospheric Sciences, Pusan National University)
  • Published : 2007.02.28

Abstract

This study presented the selection of ozone ($O_3$) potential factors and designed and assessed its potential prediction model using multiple-linear regression equations in Ulsan area during the springtime from April to June, $2000{\sim}2004$. $O_3$ potential factors were selected by analyzing the relationship between meterological parameters and surface $O_3$ concentrations. In addition, cluster analysis (e.g., average linkage and K-means clustering techniques) was performed to identify three major synoptic patterns (e.g., $P1{\sim}P3$) for an $O_3$ potential prediction model. P1 is characterized by a presence of a low-pressure system over northeastern Korea, the Ulsan was influenced by the northwesterly synoptic flow leading to a retarded sea breeze development. P2 is characterized by a weakening high-pressure system over Korea, and P3 is clearly associated with a migratory anticyclone. The stepwise linear regression was performed to develop models for prediction of the highest 1-h $O_3$ occurring in the Ulsan. The results of the models were rather satisfactory, and the high $O_3$ simulation accuracy for $P1{\sim}P3$ synoptic patterns was found to be 79, 85, and 95%, respectively ($2000{\sim}2004$). The $O_3$ potential prediction model for $P1{\sim}P3$ using the predicted meteorological data in 2005 showed good high $O_3$ prediction performance with 78, 75, and 70%, respectively. Therefore the regression models can be a useful tool for forecasting of local $O_3$ concentration.

Keywords

References

  1. 김용극, 이종범 (1994) 하계의 일 최고 오존농도 예측을 위한 신경망모델의 개발, 한국대기보전학회지, 10(4), 224-232
  2. 김유근(2003) 울산의 대기오염 기상조건과 기상여건에 따른 대기오염실태조사, 울산지역환경기술개발센터, 02-2-40-42
  3. 김유근(2004) 울산의 대기오염 기상조건과 기상여건에 따른 대기오염실태조사, 울산지역환경기술개발센터, 03-2-40-42
  4. 김유곤, 문윤섭, 오연보, 황미경(2002) 서울 및 부산지역에서 기온과 극지풍이 지표고농도 오존 발생에 미치는 영향, 한국기상학회지, 38(4), 319-331
  5. 김유근, 이화운, 전병일, 홍정혜, 문윤섭 (1996) 부산연안역에 서의 대기오염기상 P보시스템 개발에 관한 연구, 한국환경과학회지, 5(4), 399-410
  6. 박정균, 이동규(1998) 군집분석에 의한 아시아 동안에서 급격히 발달하는 저기압의 분류와 그 발달기구, 한국기상학회지, 34(4), 523-537
  7. 오인보(2003) 대도시지역 고농도 오존발생의 기상학적 메카니즘: 관측자료 분석과 수치모델링 연구, 부산대학교 대학원 박사학위 논문, 110pp
  8. 오인보, 김유근, 황미경 (2004) 연안도시지역 해풍지연이 오존분포에 미치는 영향, 한국대기환경학회지, 20(3), 345-360
  9. 이보람, 박순웅(1997) 종관 기상 상태를 고려한 한반도 대기 오염 퍼텐셜 예측법, 한국기상학회지, 33(4), 641-656
  10. 이종범 (1991) 중부지방 각지의 대기오염 잠재력에 관한 연구, 한국대기보전학회지, 7(1), 41-47
  11. 임윤규, 김유근, 오인보, 송상근(2005) Thehersonde와 기상 탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계, 한국환경과학회지, 14(6), 555-563 https://doi.org/10.5322/JES.2005.14.6.555
  12. 허정숙, 김동술(1993) 다변량 통게분석을 이용한 서울시 고 농도 오존의 예측에 관한 연구, 한국대기보전학회지, 9(3), 207-215
  13. 환경부(2004) 대기환경월보 2004년 6월, 60pp
  14. Berlyand, M.E. (1991) Prediction and regulation of air pollution, Kluwer Academic Pub., 312 pp
  15. Brain, S. Everitt (1993) Cluster analysis, 3rd edit., Halsted Press, 170 pp
  16. Cheng, S. and K.C. Lam (2000) Synoptic typing and its application to the assessment of climatic impact on concentrations of sulfur dioxide and nitrogen oxides in Hong Kong, 34, 585-594
  17. Cheng, W.L. (2002) Ozone distribution in coastal central Taiwan under sea breeze conditions, Atmos. Environ., 36, 3445-3459 https://doi.org/10.1016/S1352-2310(02)00307-2
  18. Davis, J.M., B.K. Eder, D. Nychka, and Q. Yang (1998) Modeling the effects of meteorology on ozone in Houston using cluster analysis and generalized additive models, Atmos. Environ., 12(14/15), 2505-2520
  19. Davis, R.E. and L.S. Kalkstein (1990) Development of an automated spatial synoptic climatological classification, Int. J. Climatol., 10,769-794 https://doi.org/10.1002/joc.3370100802
  20. Davis, R.E. and D.A. Gay (1993) A synoptic climatological analysis of air quality in the Grand Canyon National Park, Atmos. Environ., 5, 713-727
  21. Eder, B.K, J.M. Davis, and P. Bloomfield (1994) An automated classification scheme designed to better elucidate the dependence of ozone on meteorology, Journal of Applied Meteorology, 33, 1182-1199 https://doi.org/10.1175/1520-0450(1994)033<1182:AACSDT>2.0.CO;2
  22. Ioannis, C.Z., M. Dirnitrios, S.Z. Christos, and F.B. Alkiviadis (1995) Forcasting peak pollutant levels from meteorological variables, Atmos. Environ., 29(24), 3703 -3711 https://doi.org/10.1016/1352-2310(95)00131-H
  23. Liu, K.Y., Z. Wang, and L.F. Hsiao (2002) A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan, Environmental Modeling & Software, 17, 21-27 https://doi.org/10.1016/S1364-8152(01)00049-4
  24. Ma, Y. and TJ. Lyons (2003) Recirculation os coastal urban air pollution under a synoptic scale thermal trough in Perth Western Australia, Atmos. Environ., 37, 443-454 https://doi.org/10.1016/S1352-2310(02)00926-3
  25. Malet, L.M. and A. Joukoff(1978) Meteorological factors and air pollution index, WMO Rept., 510, 135-142
  26. Malet, L.M., A. Joukoff, and L. Tfullemans (1983), Daily forecasts of the air pollution meteorological potential for the five biggest Belgian urban areas using the forecasted data received from the European Center for Medium Weather Forecasts, WMO Rept., 394-408
  27. Melas, D., I. Ziomas, O. Klemm, and C.S. Zerefos (1998) Flow dynamics in Athens area under moderate large-scale winds, Atmos. Environ., 32, 2209-2222 https://doi.org/10.1016/S1352-2310(97)00436-6
  28. Oanh, N.T.Kim, P. Chutimon, W. Ekbordin, and W. Supat (2005) Meteorological pattern classification and application for forecasting air pollution episode potential in a mountain-valley area, Atmos. Environ., 39,1211-1225 https://doi.org/10.1016/j.atmosenv.2004.10.015
  29. Olszyna, K.J., M. Luria, and J.F. Meagher (1997) The correlation of temperature and rural ozone levels in southeastern U.S.A., Atmos. Environ., 31, 3011-3022 https://doi.org/10.1016/S1352-2310(97)00097-6
  30. Sillman, S. and P.J. Samson (1995) Impact of temperature on oxidant photo-chemistry in urban, polluted rural and remote environments, J. Geophys. Res., 100, 11947-11958
  31. Vukovich, F.M. (1994) Boundary layer ozone variations in the eastern United States and thier association with meteorological variation: Long-term variation, J. Geophys. Res., 99(D8), 16838-16850
  32. WMO (1972) Dispersion and forecasting of air pollution, WMO technical note, No. 121, 115 pp

Cited by

  1. Development and Validation Test of Effective Wet Scavenging Contribution Regression Models Using Long-term Air Monitoring and Weather Database vol.29, pp.3, 2013, https://doi.org/10.5572/KOSAE.2013.29.3.297
  2. A Study on the Characteristics of Antecedent Meteorologic Conditions on High Ozone Days in Busan vol.24, pp.8, 2015, https://doi.org/10.5322/JESI.2015.24.8.993