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FEYNMAN INTEGRAL, ASPECT OF DOBRAKOV
INTEGRAL, 1

MAN Kyu IM AND BRIAN JEFFERIES

ABSTRACT. This paper is the first in a series in which we consider bi-
linear integration with respect to measure-valued measure. We use the
integration techniques to establish generalized Egorov theorem and Vitali
theorem.

1. Introduction

The measure-valued measures V,, were introduced in [13] and studied in
relation to a measure-valued Feynman-Kac formula. For a given complex Borel
measure ¢ : B(R) — C on R, the measure-valued measures V,, is defined as
follows. The space of all continuous functions w : [0,¢] — R is denoted by
C(]0,t]). It is given with the uniform norm. If X, : C([0,t]) — R denotes
evolution at time 0 < s < ¢, then for the cylinder set £ = {Xy, € By,..., X}, €
Bptin C([0,t]) with 0 < t; < -+ < -+ < t, <t and Borel sets By,..., By,
the complex Borel measure V,,(E) is defined by the formula

(Vo (E))(B)

N ti)) . (2nty) /B/B - /B /Reﬁg(—‘)

2
[En—on 11 fzo—2q|2 _ |zy—=|?

(1) x 6_ 2n=tn_1) ... 3ta—t1) ¢ 2ty dQO(Zt)dCCl e dxndg

for each Borel subset B of R. Clearly V,, is closely related to Wiener measure
and the complex valued measure V,,(-)(B) may be viewed as Wiener measure
with an initial distribution ¢ subject to the condition {X; € B}. Another
way of looking at the measure valued measure V,, is to take the semigroup
S(t) : M(R) — M(R), t > 0, defined on the space M(R) of Borel measures on
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R by S(0) = Id and
1 £—x|?
S(t)u|(B) = T d¢, Be€ BR), pe MR
(S©uB) = = [ [ F duta)as, BeBR), ue Mm)

for t > 0 and Q(B)u = xp - p for all B € B(R) and p € M(R). If M* denotes
the operator valued set function associated with the (S, Q)-process [7], then for
each cylinder set E we have M*(E)p = V,(E N C([0,t])). If we replace M(R)
by the Hilbert space L?(R) and S by

[SeOI)E) = —= [ ¢

where the integral is understood in the sense of mean-square convergence, then
we obtain the operator valued set functions M}, associated with the Feynman
path integral. Roughly speaking, for each ¢ > 0, the bounded linear operator
Sr(t) is equal to S(it) applied to complex measures with square-integrable
densities with respect to Lebesgue measure on R.

1€—

I~ 2
= y(e)de, © € LA(R), t >0,

2. Convergence theorem for measure-valued measures

In this paper we denote the inner product of two elements a, b in a Banach
space to {(a,b) or even ab.

Let (3,£), (2, B) be measurable spaces. The space of all complex measures
defined on £ with the total variation norm is denoted by M(E). The space
of nonnegative elements of M(E) is written as M, (£). The variation of a
scalar measure g is written as |u|. Let X' be a Banach space. For any M(€)-
valued measure m : B — M(E), the operator valued measure m* : B —
L(X, M(E, X)) be defined by

m®¥(B)z = zm(B), z€ X, BcB.

Here M(&, X) is the space of X-valued measures on £ equipped with the semi-
variation norm defined by

In|l = sup{|(n,2")|(2) : 2" € &', ||2"]| < 1}, n € M(E, X).

We also write this as ||n||aqe,x). Although the semivariation of an X-valued
measure is always finite, for every infinite dimensional Banach space X, there
is an AX-valued measure n whose total variation

Inlly = sup{ In(Ep)Il}

is infinite. The supremum is over all finite partitions {E;} of £ by elements of £.
The space of X-valued measures on £ with finite variation and equipped with
the variation norm is denoted by M, (€, X). The variation of n € M,(&, &)
is written as vx(n) : £ — [0,00). Our aim is to integrate X-valued functions
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with respect to the M(E)-valued measure m; the integral takes its values in
M(E, X). We also need to consider the X-semivariation of m on B :

n
Bx(m)(B) = sup{|| >_ z;m(B; N B)||m(z.2)}-
j=1
The supremum is taken over all z; € X with ||z;|| <1 and all finite partitions
{Bj;} of Q. The X-semivariation Bx(m) of m is identical to the semivariation
of the operator valued measure m® in the sense of Dobrakov. It can happen
that Bx(m) has only the values 0 or co. An X-valued function f: Q — X is
called a simplefunction if for some n € N, there exist vectors z; € X' and sets
B; e Bfor j=1,2,...,n such that f = Z;;l z;xB,. For an X-valued simple
function f =37, zjxp, and for B in B, we define the integral

/f®dm ij (BN By) € M(E, X).

j=1

We also write this | B fdm?®. A standard argument ensures that the X-valued
measure [, f@dm is well-defined. The X-semivariation 3x (m) of m is extended
from sets to functions f : & — X’ by setting

Bae(m)(f) = B (m) (1) = sup | ]B 5 ® dml e, )

where the supremum is taken for all X-valued B-simple functions s with||s(w)||x

< ||f(@)||x for m-almost all w € Q. In the notation of Dobrakov, we have
Bx(m) = m*. We set

L1(Bx(m))

1l

{fI f: 92— X is m—measurable and Bx(m)(f) < co}
Bx(B) { f € L1(Bx(m))|f is uniformly bounded}
L1(Bx, Bx(m)) Bx(B).

The closure is taken in the norm Bx(m) defined on L1(Bx(m)). With modulo
m-null functions, £1(Bx(m)) becomes a Banach space Li(8x (m)). As noted
above, the X-semivariation Sx(m) : B — [0,00] may take only the values 0
and oo, so it can happen that £;(8x(m)) just consists of the zero function.
Let M C M(E,X)*. Let M; denote the set of all elements p of M such that
[|4]] <1 and suppose that M) is norming for M(€,X). Then for any u € M
we define g om?® : B — X* by (x,u o m*(B)) = (m¥(B)x,u) for x € X and
B € B. The set

It

My(m™) = {vx-(pom®) : p € My}

consists of measures on B with values in [0, oo]. Because

n n
1Y {@ym(B; 0 B), )l < 11> @ym(B; 0 B)llamce.x)
J=1 j=1
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for each p € My, it follows that M;(m?¥) consists of finite measures if the
X-semivariation Sx(m)(Q2) on  is finite. Because M; is a norming set for
M(E, X), we have
(2) Bx(m)(B)= sup v(B), BeB.

veEMy(m*)

By Hahn-Banach theorem, M = sim(€) ® X'* is a dense subset of M(&, X)*,
so M is norming for M(€, X). In this section we take M = sim(£)@X™. Inthe
case that X is a locally compact Hausdorff space and £ is the Borel g-algebra of
¥, another choice is M = Co(Z) ® X* where Cy(X) is the set of all continuous
functions on ¥ vanishing at infinity. We note that for any infinite dimensional
Banach space X, there exist measurable spaces (%, &), (@, B) and a measure-
valued measure m : B — M(E) such that Bx(m)() = co. Suppose that
Bx(m)(R) < co. By virtue of the equality (2), the condition that M;(m?¥) is
uniformly countable additive is equivalent to Dobrakov’s condition that Sx(m)
is continuous, that is, if B, | @, then 8x(m)(B,) — 0 as n — oo. For
X = ¢y, the classical Banach space, there exist vector measures m for which
Beo (m)(Q) < oo but B, (m) is not continuous.

Definition 2.1. ([9, Definition 1.5]) Let m : B — M(€) be a vector measure.
A function f : Q@ — X is said to be m-integrable in M(E, X) if there exist
A-valued B-simple function f;, j € N, such that f; — f pointwisely m-almost
everywhere as j — oo and { [, f; ® dm}32,; converges in M(£, X) for each
B e B. Let [ f ® dm denote this limit.

The above limit is well defined and independent of the approximating se-
quence ([7, Lemma 4.1.4]). The set function B — [, f ® dm, B € B, is
o-additive in M (&, X) by the Vitali-Hahn-Sake theorem ([1, Theorem 1.5.6]).
Clearly the map (f,m) — [ f ® dm is bilinear in the obvious sense. Also, for
the case X = C, a function f :  — C is m-integrable (as defined above) if and
only if it is m-integrable in the sense of vector measures defined in I. Kluvanek
and G. Knowles [12]. If the X-semivariation Sx(m) of m is o-finite on the set
{f # 0}, then f is m-integrable if and only if it is m®*-integrable in the sense
of Dobrakov and in this case,

/Bf®dm=/demX

for every B € B [9, Definition 1.5]. If Sx(m) is finite and continuous, then
integral coincide with the Bartle bilinear integral.

We are now in a position to state our general convergence theorem for
measure-valued measures. In the next section, we see how they can be simpli-
fied under the additional assumption of order boundedness.

Theorem 2.2. (Egorov) Let (3,€), (0, B) be measurable spaces and X a Ba-
nach space. Suppose that m : B — M(E) is an M(E)-valued measure for which
Ba(m)() < oo and Bx(m) is continuous. Let fn,, f:Q — X, n €N be
m-measurable functions such that f, — f, m-a.e. Then
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a) for any e > 0, there is a set B € B such that Bx(m)(B¢) < ¢ and
fn — f uniformly on B.
b) fn — f, Bx(m)-measure.

Proof. Since Bx(m) is continuous, the set My (m?) is uniformly o-additive on
B. The Bartle-Dunford-Schwartz theorem and equation (2) shows that there is
a positive, finite and o-additive measure A on B such that for any £ > 0, there
exists a § > 0 such that for all F € B with \(F) < 4, Bx(m(F)) < €. Hence by
the Egorov theorem for A, for this 6 > 0, there is B € B such that A(B¢) < ¢
and f, — f uniformly on B, and f, — f in Sx(m)-measure. Thus we have
Bx(m)(B¢) < € and f,, — f in Bx(m)-measure. O

Theorem 2.3. (Vitali) Let (X,£), (Q,B) be measurable spaces and X a Ba-
nach space. Suppose that m : B — M(E) is an M(E)-valued measure for
which Bx(m)(Q) < oo and Bx(m) is continuous. Let (fn) be a sequence from
L1(Bx(m)) with f, m-integrable functions and let f : Q@ — X be m-measurable.
Assume that

a) fn — f in Bx(m)-measure or

ay fn— f, m-a.e.
b) limg, (m)(a)—0 Bx (M) (faxa) = 0, uniformly for n € N.
c) For all e > 0, there is a set A. € B with Bx(m)(A:) < oo, such that

Bx(m)(fnxa-a.) <&, for alln € N.

Then f € L1(Bx(m)) and Bx(m)(fn — f) — 0. Furthermore, the function f
is m-integrable in M(E, X) and [, fn®dm — [, f@®dm in M(E, X), uniformly
for B € B as n — oo. Conversely, if f € L1(8x(m)) and Bx(m)(fn — f) — 0
as n— 00, then conditions a) and b) are satisfied.

Proof. By Egorov theorem, a’) implies a). Assume conditions a), b) and c)
satisfied. To show that {f,) is a Cauchy sequence in £;(Bx(m)), let £ > 0 and
let A. € B be a set satisfying condition c). By condition b) there is a § > 0 for
all A € Bif Bx(m)(A) < 6 then Bx(m)(fnxa) < € for all n € N. By a), there
exists N, such that if
Bnm = { s € At [[fa(s) — fm(s)llx > €/Bx(m)(A:)},

then for all n,m > N¢, B, ,n € B and 8x(m)(Bn,m) < d. Then for n,m > N,

BX(m)(fn - fm)

+ Bx(m)((fa — fm)xe-a.)

< Bx(m)(faXB,.m) + B2 (M) (fmXBa.m) + Bx (M) ((fr = fm)XA:~Bom)

+ Bx(m)(faxa-a.) + Bx(m)(fmxo—a.)
< Be.

Hence (fy) is a Cauchy sequence in L£i(8x(m)). In particular, [ frn ® dm,
n=1,2,..., converges for each B € B. Since £;(8x(m)) is complete, there a
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m-measurable function g in £;(8x(m)) such that Bx(m)(fn —g) — 0. Then
fn — g in Bx(m)-measure. From a) f = g Bx(m)-a.e., f € L1(Bx(m)) and
Ba(m)(fn — f) — 0. To check that f is m-integrable in M(&, X'), we need to
exhibit a sequence (sy) of X-valued £-simple functions such that sy — f m-a.e.
as k — oo and the indefinite integrals [ s ® dm, k = 1,2,..., are uniformly
bounded and uniformly countably additive in M(E, X). This follows from ([9,
Theorem 2.6}), where it is also shown that [, fo®dm — [5 f®dmin M(E, X),
uniformly for B € B as n — co. Conversely, assume that f € £1(8x(m)) and
Bx(m)(fn — f) = 0. Then f, — f in Bx(m)-measure, so a) is satisfied. To
prove b), assume f € £1(8x(m)). Let ¢ > 0 and let N € N be such that for
every n > N Bx(m)(fn, — f) <&/2. Then for all A€ Band n > N

Bx(m)(fnxa — fxa) <e/2
that is,

Ba(m)(fnxa) < Bx(m)(fxa)+e/2.

But since f € £1(Bx(m)), thereis a §y > 0 such that A € B and Sx(m)(A) < do
then Bx(m)(fxa) < €/2. Then for n > N and Bx(m) (A) < do, Bx(m)(frnXxa)
< e. Forn < N, we can find §; > 0 such that A € B and Bx(m)(4) < &
then Bx(m)(fnxa) < € for alln < N. If we take § = inf{ 0o, 1} , then for any
A € B with Sx(m)(A) < 8, Bx(m){(fuxa) <eforalneN 0

3. Order bounded measures

Let (£,£), (2,B) be measurable spaces. A measure-valued measure m :
B — M(E) is said to be positive if it takes its values in the space M () of
nonnegative measures. We say that m is order bounded if there exists a pos-
itive vector measure, n, for which n(A) > |m(A)| holds for all A € B. In the
present context, this is equivalent to saying that m has order bounded range
in the Banach lattice M(&), and see ([7, Lemma 4.4.4]). The smallest positive
measure |m|aq satisfying this requirement is called the modulus of m. It is
associated with the modulus of the regular linear map from the Banach lattice
L (€, B) to the Banach lattice M(€) defined by integration with respect to m.
We write |m|ap > |njaq and say that m dominates n if |m|p(4) > |n|m(A)
for all A € B. As for the case of LP-valued measure [10], the convergence the-
orems described in Section 2 can be simplified considerably for order bounded
measure-valued measures, such as the measures V,, described in Section 1.

Example 3.1. Let ¢ € M(B(R)). Then |V4(B)| < Vj4(B) for all B € B.
Moreover, [Vy|pm = Vig)-

The modulus |m|a is easily described.

Lemma 3.2. Let m : B — M(E) be a measure-valued measure and let (1 be
the variation of the additive set function

BxE— (m(B))(E), BeB,EcE.
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Then m is order bounded if and only if u(2 x ) < co. If m is order bounded,
then the modulus |m|a : B — M, (&) is given by (jm|am(B))(E) = u(B x E),
forallBe B, E€€.

Another way of viewing a measure-valued measure is as a bimeasure. In
general, the variation u defined in Lemma 3.2 need not be o-additive. A suf-
ficient condition guaranteeing the o-additive of x is that m is regular in each
variable. We denote the scalar measure B — (m(B))(FE), B € B, by mg for
each F € £.

Proposition 3.3. Let m : B — M (€) be a positive measure-valued measure.
Then

Uame)(m)(B) = Bx(m)(B) = vexmee,x)) (mY)(B) = mg(B)
for all B € B.

Proof. 1)
v(m)(B) = supy_|m(B;NB)|
j=1
= supz (B; N B)(%))
= m(B ) %)
= mx(B).
i)
Bx(m)(B) =  sup ||Z$y (Bj N B)llmee,x)
{=31{Bs} =1
= sup  sup |y exfey,@”)(m(B; N B))(Ey)]
{Ij}{B]'}(T*)fEk} ik
ek <
= sup Iy cenlxy, 2*)u((B; N B) x Ey)|
(= 1 Bx} JZ,C ’

{z;}{Bj}en|<1

= sup2|mj, Mpw((Bj N B) x Ey)
- sup§:|xg, i((B; 0 B) x )

- supz.%, s (51 B)

= mg(B)
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where ¢, € C.

v(m*)(B) = sup Y |[m(B; N B)|cx.me.x)
=1

= supzllsn”lp lzm(B; N B)l| ame, )
j=11*

n

= supd sup | Y (z,z")exm(B; N B)(Ey)|

ceeq el <1 la* <1
7= el<t
= my(B).
O

Corollary 3.4. Let m : B — M(E) be an order bounded measure-valued mea-
sure with modulus {mip. Let f : Q@ — X be an (Jm|m)s-Bochner integrable
function. Then f is mg-Bochner integrable for each E € £ and m-integrable
in My (E,X). The equality

(Lf@dm)(E):Lfde

holds for all B € B and E € £. Moreover,
(osen ([ £odm)(B) < [ Iflxd(miros.

Proof. {3, Theorem 6]. O

For order bounded measure-valued measures m, the m-integrability of st-
rongly measurable X-valued functions is equivalent to their Pettis integrability
with respect to an associated scalar measure.

Proposition 3.5. Let m : B — M(&) be an order bounded measure-valued
measure with modulus |m|arq. A strongly m-measurable function f : Q — & is
m-integrable in M(E, X) if and only if it is Pettis (|m|m)xs-integrable in X. In
this case, f is Pettis mg-integrable in X for each E € £ and the equality

(/ f®dm)(E)=/ fdmg
B B
holds for all Be B and E € £.

Proof. To show this proposition, it is sufficient to show that

/f®dm /f(t (dt x E).

Since all simple functions are m*-integrable, above equality is true for sim-
ple f,. As general proof method of integral, it is satisfying the equality for
the function f such that simple functions f, converges to f m¥-a.e. And
{(fam®)()(E) : E € €,n = 1,2,...} is uniformly countably additive if and
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only if {[|{(fn,z*)|u(dt x E) : ||z*|| < 1,n = 1,2,...} is uniformly countably
additive if and only if f is myx-Pettis integrable. O

Remark 3.6. If m is positive and Sx(m)(f) < oo, then [, || fllxdms < oco. See

[4].

Proposition 3.7. Let m : B — M(&) be an order bounded measure-valued

measure. Then for any Banach space X, we have Bx(m)(Q) < oo and Bx(m)
18 continuous.

Proof. We have

Ba(m)(E) = sup{| D> _(zxm(By N E)(B;), ) : |, 25| < 1}
ok
< (Imlm(E))(E)
so Bx(m)(Q) is finite. Because |m|r : B — M () is a measure, it follows
that Bx(m) is continuous. U

For order bounded measure-valued measures, we have the following simpli-
fied versions of the convergence theorem of Section 2. We state them without
proof.

Theorem 3.8. (Egorov) Let (3,€), (Q, B) be measurable spaces and X a Ba-
nach space. Suppose that m : B — M(E) is an order bounded M(E)-valued
measure. Let f,, f:Q — X, n € N be m-measurable functions such that
fn — f, m-a.e. Then a) for any € > 0, there is a set B € B such that
Bx(m)(B®) < ¢ and f, — f uniformly on B. b) f, — f, Ba(m)-measure.

Theorem 3.9. (Vitali) Let (X, &), (Q, B) be measurable spaces and X a Banach
space. Suppose that m : B — M(E) is an order bounded M(E)-valued measure
with modulus |m|a. Let (f,) be a sequence from L1(Bx(m)) with f, Pettis
(|m| m)u-integrable functions and let f : Q — X be m-measurable. Assume that
a) fn — f in Bx(m)-measure or &) fn, — f, m-a.e. b) limg, (;m)(a)—0 Bx(m)
(faxa) =0, uniformly forn € N. Then f € L1(Bx(m)) and Bx(m)(fn—f) —
0. Furthermore, the function f is m-integrable in M(E,X) and | g fn®dm —
Jz f ®dm in M(E,X), uniformly for B € B as n — oo. Conversely, if

f € Li(Bx(m)) and Bx(m)(fr — f) — 0 as n — oo, then conditions a) and b)
are satisfied.
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