FEYNMAN INTEGRAL, ASPECT OF DOBRAKOV INTEGRAL, I

MAN KYU IM AND BRIAN JEFFERIES

ABSTRACT. This paper is the first in a series in which we consider bilinear integration with respect to measure-valued measure. We use the integration techniques to establish generalized Egorov theorem and Vitali theorem.

1. Introduction

The measure-valued measures V_{φ} were introduced in [13] and studied in relation to a measure-valued Feynman-Kac formula. For a given complex Borel measure $\varphi:\mathcal{B}(\mathbb{R})\to\mathbb{C}$ on \mathbb{R} , the measure-valued measures V_{φ} is defined as follows. The space of all continuous functions $\omega:[0,t]\to\mathbb{R}$ is denoted by C([0,t]). It is given with the uniform norm. If $X_s:C([0,t])\to\mathbb{R}$ denotes evolution at time $0\leq s\leq t$, then for the cylinder set $E=\{X_{t_1}\in B_1,\ldots,X_{t_n}\in B_n\}$ in C([0,t]) with $0\leq t_1<\cdots<\cdots< t_n\leq t$ and Borel sets B_1,\ldots,B_n , the complex Borel measure $V_{\varphi}(E)$ is defined by the formula

$$(V_{\varphi}(E))(B) = \frac{1}{\sqrt{(2\pi(t-t_n))\cdots(2\pi t_1)}} \int_{B} \int_{B_n} \cdots \int_{B_1} \int_{\mathbb{R}} e^{-\frac{|\xi-x_n|^2}{2(t-t_n)}} d\varphi(x) dx_1 \cdots dx_n d\xi$$

$$(1) \times e^{-\frac{|x_n-x_{n-1}|^2}{2(t_n-t_{n-1})}} \cdots e^{-\frac{|x_2-x_1|^2}{2(t_2-t_1)}} e^{-\frac{|x_1-x_1|^2}{2t_1}} d\varphi(x) dx_1 \cdots dx_n d\xi$$

for each Borel subset B of \mathbb{R} . Clearly V_{φ} is closely related to Wiener measure and the complex valued measure $V_{\varphi}(\cdot)(B)$ may be viewed as Wiener measure with an initial distribution φ subject to the condition $\{X_t \in B\}$. Another way of looking at the measure valued measure V_{φ} is to take the semigroup $S(t): \mathcal{M}(\mathbb{R}) \to \mathcal{M}(\mathbb{R}), t \geq 0$, defined on the space $\mathcal{M}(\mathbb{R})$ of Borel measures on

Received January 12, 2006; Revised February 1, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 81S40, 58D30; Secondary 46G10, 28B05.

Key words and phrases. measure-valued measure, Dobrakov integral.

This work was supported by the Post-doctoral Fellowship Program of Korea Science & Engineering Foundation (KOSEF).

 \mathbb{R} by S(0) = Id and

$$[S(t)\mu](B) = \frac{1}{\sqrt{2\pi t}} \int_B \int_{\mathbb{R}} e^{-\frac{|\xi - x|^2}{2t}} d\mu(x) d\xi, \ B \in \mathcal{B}(\mathbb{R}), \ \mu \in \mathcal{M}(\mathbb{R})$$

for t > 0 and $Q(B)\mu = \chi_B \cdot \mu$ for all $B \in \mathcal{B}(\mathbb{R})$ and $\mu \in \mathcal{M}(\mathbb{R})$. If M^t denotes the operator valued set function associated with the (S, Q)-process [7], then for each cylinder set E we have $M^t(E)\varphi = V_{\varphi}(E \cap C([0, t]))$. If we replace $\mathcal{M}(\mathbb{R})$ by the Hilbert space $L^2(\mathbb{R})$ and S by

$$[S_F(t)](\psi)(\xi) = \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} e^{i\frac{|\xi-x|^2}{2t}} \psi(x) dx, \ \psi \in L^2(\mathbb{R}), \ t > 0,$$

where the integral is understood in the sense of mean-square convergence, then we obtain the operator valued set functions M_F^t associated with the Feynman path integral. Roughly speaking, for each $t \geq 0$, the bounded linear operator $S_F(t)$ is equal to S(it) applied to complex measures with square-integrable densities with respect to Lebesgue measure on \mathbb{R} .

2. Convergence theorem for measure-valued measures

In this paper we denote the inner product of two elements a, b in a Banach space to $\langle a, b \rangle$ or even ab.

Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces. The space of all complex measures defined on \mathcal{E} with the total variation norm is denoted by $\mathcal{M}(\mathcal{E})$. The space of nonnegative elements of $\mathcal{M}(\mathcal{E})$ is written as $\mathcal{M}_{+}(\mathcal{E})$. The variation of a scalar measure μ is written as $|\mu|$. Let \mathcal{X} be a Banach space. For any $\mathcal{M}(\mathcal{E})$ -valued measure $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$, the operator valued measure $m^{\mathcal{X}}: \mathcal{B} \to \mathcal{L}(\mathcal{X}, \mathcal{M}(\mathcal{E}, \mathcal{X}))$ be defined by

$$m^{\mathcal{X}}(B)x = xm(B), \quad x \in \mathcal{X}, \ B \in \mathcal{B}.$$

Here $\mathcal{M}(\mathcal{E}, \mathcal{X})$ is the space of \mathcal{X} -valued measures on \mathcal{E} equipped with the semi-variation norm defined by

$$||n|| = \sup\{|\langle n, x' \rangle|(\Sigma) : x' \in \mathcal{X}', ||x'|| \le 1\}, \quad n \in \mathcal{M}(\mathcal{E}, \mathcal{X}).$$

We also write this as $||n||_{\mathcal{M}(\mathcal{E},\mathcal{X})}$. Although the semivariation of an \mathcal{X} -valued measure is always finite, for every infinite dimensional Banach space \mathcal{X} , there is an \mathcal{X} -valued measure n whose total variation

$$||n||_v = \sup\{\sum_j ||n(E_j)||\}$$

is infinite. The supremum is over all finite partitions $\{E_j\}$ of Σ by elements of \mathcal{E} . The space of \mathcal{X} -valued measures on \mathcal{E} with finite variation and equipped with the variation norm is denoted by $\mathcal{M}_v(\mathcal{E},\mathcal{X})$. The variation of $n \in \mathcal{M}_v(\mathcal{E},\mathcal{X})$ is written as $v_{\mathcal{X}}(n): \mathcal{E} \to [0,\infty)$. Our aim is to integrate \mathcal{X} -valued functions

with respect to the $\mathcal{M}(\mathcal{E})$ -valued measure m; the integral takes its values in $\mathcal{M}(\mathcal{E}, \mathcal{X})$. We also need to consider the \mathcal{X} -semivariation of m on \mathcal{B} :

$$\beta_{\mathcal{X}}(m)(B) = \sup\{||\sum_{j=1}^{n} x_j m(B_j \cap B)||_{\mathcal{M}(\mathcal{E},\mathcal{X})}\}.$$

The supremum is taken over all $x_j \in \mathcal{X}$ with $||x_j|| \leq 1$ and all finite partitions $\{B_j\}$ of Ω . The \mathcal{X} -semivariation $\beta_{\mathcal{X}}(m)$ of m is identical to the semivariation of the operator valued measure $m^{\mathcal{X}}$ in the sense of Dobrakov. It can happen that $\beta_{\mathcal{X}}(m)$ has only the values 0 or ∞ . An \mathcal{X} -valued function $f:\Omega \to \mathcal{X}$ is called a simple function if for some $n \in \mathbb{N}$, there exist vectors $x_j \in \mathcal{X}$ and sets $B_j \in \mathcal{B}$ for $j=1,2,\ldots,n$ such that $f=\sum_{j=1}^n x_j\chi_{B_j}$. For an \mathcal{X} -valued simple function $f=\sum_{j=1}^n x_j\chi_{B_j}$ and for \mathcal{B} in \mathcal{B} , we define the integral

$$\int_B f \otimes dm = \sum_{j=1}^n x_j m(B \cap B_j) \in \mathcal{M}(\mathcal{E}, \mathcal{X}).$$

We also write this $\int_B f dm^{\mathcal{X}}$. A standard argument ensures that the \mathcal{X} -valued measure $\int_B f \otimes dm$ is well-defined. The \mathcal{X} -semivariation $\beta_{\mathcal{X}}(m)$ of m is extended from sets to functions $f: \Omega \to \mathcal{X}$ by setting

$$eta_{\mathcal{X}}(m)(f) = eta_{\mathcal{X}}(m)(|f|) = \sup ||\int_{B} s \otimes dm||_{\mathcal{M}(\mathcal{E},\mathcal{X})},$$

where the supremum is taken for all \mathcal{X} -valued \mathcal{B} -simple functions s with $||s(\omega)||_{\mathcal{X}} \le ||f(\omega)||_{\mathcal{X}}$ for m-almost all $\omega \in \Omega$. In the notation of Dobrakov, we have $\beta_{\mathcal{X}}(m) = \hat{m}^{\mathcal{X}}$. We set

$$\mathcal{L}_{1}(\beta_{\mathcal{X}}(m)) = \{f | f : \Omega \to \mathcal{X} \text{ is } m\text{-measurable and } \beta_{\mathcal{X}}(m)(f) < \infty\}$$

$$B_{\mathcal{X}}(\mathcal{B}) = \{ f \in \mathcal{L}_{1}(\beta_{\mathcal{X}}(m)) | f \text{ is uniformly bounded} \}$$

$$\mathcal{L}_{1}(B_{\mathcal{X}}, \beta_{\mathcal{X}}(m)) = \overline{B_{\mathcal{X}}(\mathcal{B})}.$$

The closure is taken in the norm $\beta_{\mathcal{X}}(m)$ defined on $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$. With modulo m-null functions, $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ becomes a Banach space $L_1(\beta_{\mathcal{X}}(m))$. As noted above, the \mathcal{X} -semivariation $\beta_{\mathcal{X}}(m): \mathcal{B} \to [0,\infty]$ may take only the values 0 and ∞ , so it can happen that $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ just consists of the zero function. Let $M \subset \mathcal{M}(\mathcal{E},\mathcal{X})^*$. Let M_1 denote the set of all elements μ of M such that $||\mu|| \leq 1$ and suppose that M_1 is norming for $\mathcal{M}(\mathcal{E},\mathcal{X})$. Then for any $\mu \in M$ we define $\mu \circ m^{\mathcal{X}}: \mathcal{B} \to \mathcal{X}^*$ by $\langle x, \mu \circ m^{\mathcal{X}}(B) \rangle = \langle m^{\mathcal{X}}(B)x, \mu \rangle$ for $x \in \mathcal{X}$ and $B \in \mathcal{B}$. The set

$$\mathcal{M}_1(m^{\mathcal{X}}) = \{ v_{\mathcal{X}^*}(\mu \circ m^{\mathcal{X}}) : \mu \in M_1 \}$$

consists of measures on \mathcal{B} with values in $[0,\infty]$. Because

$$|\sum_{j=1}^{n} \langle x_j m(B_j \cap B), \mu \rangle| \leq ||\sum_{j=1}^{n} x_j m(B_j \cap B)||_{\mathcal{M}(\mathcal{E}, \mathcal{X})}$$

for each $\mu \in M_1$, it follows that $\mathcal{M}_1(m^{\mathcal{X}})$ consists of finite measures if the \mathcal{X} -semivariation $\beta_{\mathcal{X}}(m)(\Omega)$ on Ω is finite. Because M_1 is a norming set for $\mathcal{M}(\mathcal{E}, \mathcal{X})$, we have

(2)
$$\beta_{\mathcal{X}}(m)(B) = \sup_{\nu \in \mathcal{M}_1(m^{\mathcal{X}})} \nu(B), \quad B \in \mathcal{B}.$$

By Hahn-Banach theorem, $M = sim(\mathcal{E}) \otimes \mathcal{X}^*$ is a dense subset of $\mathcal{M}(\mathcal{E}, \mathcal{X})^*$, so M_1 is norming for $\mathcal{M}(\mathcal{E}, \mathcal{X})$. In this section we take $M = sim(\mathcal{E}) \otimes \mathcal{X}^*$. In the case that Σ is a locally compact Hausdorff space and \mathcal{E} is the Borel σ -algebra of Σ , another choice is $M = C_0(\Sigma) \otimes \mathcal{X}^*$ where $C_0(\Sigma)$ is the set of all continuous functions on Σ vanishing at infinity. We note that for any infinite dimensional Banach space \mathcal{X} , there exist measurable spaces (Σ, \mathcal{E}) , (Ω, \mathcal{B}) and a measure-valued measure $m : \mathcal{B} \to \mathcal{M}(\mathcal{E})$ such that $\beta_{\mathcal{X}}(m)(\Omega) = \infty$. Suppose that $\beta_{\mathcal{X}}(m)(\Omega) < \infty$. By virtue of the equality (2), the condition that $\mathcal{M}_1(m^{\mathcal{X}})$ is uniformly countable additive is equivalent to Dobrakov's condition that $\beta_{\mathcal{X}}(m)$ is continuous, that is, if $B_n \downarrow \emptyset$, then $\beta_{\mathcal{X}}(m)(B_n) \to 0$ as $n \to \infty$. For $\mathcal{X} = c_0$, the classical Banach space, there exist vector measures m for which $\beta_{c_0}(m)(\Omega) < \infty$ but $\beta_{c_0}(m)$ is not continuous.

Definition 2.1. ([9, Definition 1.5]) Let $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ be a vector measure. A function $f: \Omega \to \mathcal{X}$ is said to be m-integrable in $\mathcal{M}(\mathcal{E}, \mathcal{X})$ if there exist \mathcal{X} -valued \mathcal{B} -simple function $f_j, \ j \in \mathbb{N}$, such that $f_j \to f$ pointwisely m-almost everywhere as $j \to \infty$ and $\{\int_B f_j \otimes dm\}_{j=1}^{\infty}$ converges in $\mathcal{M}(\mathcal{E}, \mathcal{X})$ for each $B \in \mathcal{B}$. Let $\int_B f \otimes dm$ denote this limit.

The above limit is well defined and independent of the approximating sequence ([7, Lemma 4.1.4]). The set function $B \to \int_B f \otimes dm$, $B \in \mathcal{B}$, is σ -additive in $\mathcal{M}(\mathcal{E},\mathcal{X})$ by the Vitali-Hahn-Sake theorem ([1, Theorem 1.5.6]). Clearly the map $(f,m) \to \int f \otimes dm$ is bilinear in the obvious sense. Also, for the case $\mathcal{X} = \mathbb{C}$, a function $f: \Omega \to \mathbb{C}$ is m-integrable (as defined above) if and only if it is m-integrable in the sense of vector measures defined in I. Kluvánek and G. Knowles [12]. If the \mathcal{X} -semivariation $\beta_{\mathcal{X}}(m)$ of m is σ -finite on the set $\{f \neq 0\}$, then f is m-integrable if and only if it is $m^{\mathcal{X}}$ -integrable in the sense of Dobrakov and in this case,

$$\int_B f \otimes dm = \int_B f dm^{\mathcal{X}}$$

for every $B \in \mathcal{B}$ [9, Definition 1.5]. If $\beta_{\mathcal{X}}(m)$ is finite and continuous, then integral coincide with the Bartle bilinear integral.

We are now in a position to state our general convergence theorem for measure-valued measures. In the next section, we see how they can be simplified under the additional assumption of order boundedness.

Theorem 2.2. (Egorov) Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces and \mathcal{X} a Banach space. Suppose that $m : \mathcal{B} \to \mathcal{M}(\mathcal{E})$ is an $\mathcal{M}(\mathcal{E})$ -valued measure for which $\beta_{\mathcal{X}}(m)(\Omega) < \infty$ and $\beta_{\mathcal{X}}(m)$ is continuous. Let $f_n, f : \Omega \to \mathcal{X}, n \in \mathbb{N}$ be m-measurable functions such that $f_n \to f$, m-a.e. Then

- a) for any $\varepsilon > 0$, there is a set $B \in \mathcal{B}$ such that $\beta_{\mathcal{X}}(m)(B^c) < \varepsilon$ and $f_n \to f$ uniformly on B.
- b) $f_n \to f$, $\beta_{\mathcal{X}}(m)$ -measure.

Proof. Since $\beta_{\mathcal{X}}(m)$ is continuous, the set $\mathcal{M}_1(m^{\mathcal{X}})$ is uniformly σ -additive on \mathcal{B} . The Bartle-Dunford-Schwartz theorem and equation (2) shows that there is a positive, finite and σ -additive measure λ on \mathcal{B} such that for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $F \in \mathcal{B}$ with $\lambda(F) < \delta$, $\beta_{\mathcal{X}}(m(F)) < \varepsilon$. Hence by the Egorov theorem for λ , for this $\delta > 0$, there is $B \in \mathcal{B}$ such that $\lambda(B^c) < \delta$ and $f_n \to f$ uniformly on B, and $f_n \to f$ in $\beta_{\mathcal{X}}(m)$ -measure. Thus we have $\beta_{\mathcal{X}}(m)(B^c) < \varepsilon$ and $f_n \to f$ in $\beta_{\mathcal{X}}(m)$ -measure.

Theorem 2.3. (Vitali) Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces and \mathcal{X} a Banach space. Suppose that $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ is an $\mathcal{M}(\mathcal{E})$ -valued measure for which $\beta_{\mathcal{X}}(m)(\Omega) < \infty$ and $\beta_{\mathcal{X}}(m)$ is continuous. Let $\langle f_n \rangle$ be a sequence from $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ with f_n m-integrable functions and let $f: \Omega \to \mathcal{X}$ be m-measurable. Assume that

- a) $f_n \to f$ in $\beta_{\mathcal{X}}(m)$ -measure or
- a') $f_n \to f$, m-a.e.
- b) $\lim_{\beta_{\mathcal{X}}(m)(A)\to 0} \beta_{\mathcal{X}}(m)(f_n\chi_A) = 0$, uniformly for $n \in \mathbb{N}$.
- c) For all $\varepsilon > 0$, there is a set $A_{\varepsilon} \in \mathcal{B}$ with $\beta_{\mathcal{X}}(m)(A_{\varepsilon}) < \infty$, such that $\beta_{\mathcal{X}}(m)(f_n\chi_{\Omega-A_{\varepsilon}}) < \varepsilon$, for all $n \in \mathbb{N}$.

Then $f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n - f) \to 0$. Furthermore, the function f is m-integrable in $\mathcal{M}(\mathcal{E}, \mathcal{X})$ and $\int_B f_n \otimes dm \to \int_B f \otimes dm$ in $\mathcal{M}(\mathcal{E}, \mathcal{X})$, uniformly for $B \in \mathcal{B}$ as $n \to \infty$. Conversely, if $f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n - f) \to 0$ as $n \to \infty$, then conditions a) and b) are satisfied.

Proof. By Egorov theorem, a') implies a). Assume conditions a), b) and c) satisfied. To show that $\langle f_n \rangle$ is a Cauchy sequence in $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$, let $\varepsilon > 0$ and let $A_{\varepsilon} \in \mathcal{B}$ be a set satisfying condition c). By condition b) there is a $\delta > 0$ for all $A \in \mathcal{B}$ if $\beta_{\mathcal{X}}(m)(A) < \delta$ then $\beta_{\mathcal{X}}(m)(f_n\chi_A) < \varepsilon$ for all $n \in \mathbb{N}$. By a), there exists N_{ε} such that if

$$B_{n,m} = \{ s \in A_{\varepsilon} : ||f_n(s) - f_m(s)||_{\mathcal{X}} > \varepsilon/\beta_{\mathcal{X}}(m)(A_{\varepsilon}) \},$$

then for all $n, m \geq N_{\varepsilon}$, $B_{n,m} \in \mathcal{B}$ and $\beta_{\mathcal{X}}(m)(B_{n,m}) < \delta$. Then for $n, m \geq N_{\varepsilon}$

$$\beta_{\mathcal{X}}(m)(f_n - f_m)$$

$$\leq \beta_{\mathcal{X}}(m)((f_n - f_m)\chi_{B_{n,m}}) + \beta_{\mathcal{X}}(m)((f_n - f_m)\chi_{A_{\varepsilon} - B_{n,m}}) + \beta_{\mathcal{X}}(m)((f_n - f_m)\chi_{\Omega - A_{\varepsilon}})$$

$$\leq \beta_{\mathcal{X}}(m)(f_n\chi_{B_{n,m}}) + \beta_{\mathcal{X}}(m)(f_m\chi_{B_{n,m}}) + \beta_{\mathcal{X}}(m)((f_n - f_m)\chi_{A_{\varepsilon} - B_{n,m}}) + \beta_{\mathcal{X}}(m)(f_n\chi_{\Omega - A_{\varepsilon}}) + \beta_{\mathcal{X}}(m)(f_m\chi_{\Omega - A_{\varepsilon}})$$

 $\leq 5\varepsilon$.

Hence $\langle f_n \rangle$ is a Cauchy sequence in $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$. In particular, $\int_B f_n \otimes dm$, $n = 1, 2, \ldots$, converges for each $B \in \mathcal{B}$. Since $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ is complete, there a

m-measurable function g in $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ such that $\beta_{\mathcal{X}}(m)(f_n-g)\to 0$. Then $f_n\to g$ in $\beta_{\mathcal{X}}(m)$ -measure. From a) f=g $\beta_{\mathcal{X}}(m)$ -a.e., $f\in\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n-f)\to 0$. To check that f is m-integrable in $\mathcal{M}(\mathcal{E},\mathcal{X})$, we need to exhibit a sequence $\langle s_k \rangle$ of \mathcal{X} -valued \mathcal{E} -simple functions such that $s_k\to f$ m-a.e. as $k\to\infty$ and the indefinite integrals $\int s_k\otimes dm,\ k=1,2,\ldots$, are uniformly bounded and uniformly countably additive in $\mathcal{M}(\mathcal{E},\mathcal{X})$. This follows from ([9, Theorem 2.6]), where it is also shown that $\int_B f_n\otimes dm\to \int_B f\otimes dm$ in $\mathcal{M}(\mathcal{E},\mathcal{X})$, uniformly for $B\in\mathcal{B}$ as $n\to\infty$. Conversely, assume that $f\in\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n-f)\to 0$. Then $f_n\to f$ in $\beta_{\mathcal{X}}(m)$ -measure, so a) is satisfied. To prove b), assume $f\in\mathcal{L}_1(\beta_{\mathcal{X}}(m))$. Let $\varepsilon>0$ and let $N\in\mathbb{N}$ be such that for every $n\geq N$ $\beta_{\mathcal{X}}(m)(f_n-f)<\varepsilon/2$. Then for all $A\in\mathcal{B}$ and $n\geq N$

$$\beta_{\mathcal{X}}(m)(f_n\chi_A - f\chi_A) < \varepsilon/2$$

that is,

$$\beta_{\mathcal{X}}(m)(f_n\chi_A) \leq \beta_{\mathcal{X}}(m)(f\chi_A) + \varepsilon/2.$$

But since $f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m))$, there is a $\delta_0 > 0$ such that $A \in \mathcal{B}$ and $\beta_{\mathcal{X}}(m)(A) < \delta_0$ then $\beta_{\mathcal{X}}(m)(f\chi_A) < \varepsilon/2$. Then for $n \geq N$ and $\beta_{\mathcal{X}}(m)$ $(A) < \delta_0$, $\beta_{\mathcal{X}}(m)(f_n\chi_A) < \varepsilon$. For $n \leq N$, we can find $\delta_1 > 0$ such that $A \in \mathcal{B}$ and $\beta_{\mathcal{X}}(m)(A) < \delta_1$ then $\beta_{\mathcal{X}}(m)(f_n\chi_A) < \varepsilon$ for all $n \leq N$. If we take $\delta = \inf\{\delta_0, \delta_1\}$, then for any $A \in \mathcal{B}$ with $\beta_{\mathcal{X}}(m)(A) < \delta$, $\beta_{\mathcal{X}}(m)(f_n\chi_A) < \varepsilon$ for all $n \in \mathbb{N}$.

3. Order bounded measures

Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces. A measure-valued measure $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ is said to be *positive* if it takes its values in the space $\mathcal{M}_+(\mathcal{E})$ of nonnegative measures. We say that m is $order\ bounded$ if there exists a positive vector measure, n, for which $n(A) \geq |m(A)|$ holds for all $A \in \mathcal{B}$. In the present context, this is equivalent to saying that m has order bounded range in the Banach lattice $\mathcal{M}(\mathcal{E})$, and see ([7, Lemma 4.4.4]). The smallest positive measure $|m|_{\mathcal{M}}$ satisfying this requirement is called the modulus of m. It is associated with the modulus of the regular linear map from the Banach lattice $\mathcal{L}_{\infty}(\Omega,\mathcal{B})$ to the Banach lattice $\mathcal{M}(\mathcal{E})$ defined by integration with respect to m. We write $|m|_{\mathcal{M}} \geq |n|_{\mathcal{M}}$ and say that m dominates n if $|m|_{\mathcal{M}}(A) \geq |n|_{\mathcal{M}}(A)$ for all $A \in \mathcal{B}$. As for the case of L^p -valued measure [10], the convergence theorems described in Section 2 can be simplified considerably for order bounded measure-valued measures, such as the measures V_{φ} described in Section 1.

Example 3.1. Let $\phi \in \mathcal{M}(\mathcal{B}(\mathbb{R}))$. Then $|V_{\phi}(B)| \leq V_{|\phi|}(B)$ for all $B \in \mathcal{B}$. Moreover, $|V_{\phi}|_{\mathcal{M}} = V_{|\phi|}$.

The modulus $|m|_{\mathcal{M}}$ is easily described.

Lemma 3.2. Let $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ be a measure-valued measure and let μ be the variation of the additive set function

$$B \times E \longmapsto (m(B))(E), \quad B \in \mathcal{B}, E \in \mathcal{E}.$$

Then m is order bounded if and only if $\mu(\Omega \times \Sigma) < \infty$. If m is order bounded, then the modulus $|m|_{\mathcal{M}} : \mathcal{B} \to \mathcal{M}_+(\mathcal{E})$ is given by $(|m|_{\mathcal{M}}(B))(E) = \mu(B \times E)$, for all $B \in \mathcal{B}$, $E \in \mathcal{E}$.

Another way of viewing a measure-valued measure is as a bimeasure. In general, the variation μ defined in Lemma 3.2 need not be σ -additive. A sufficient condition guaranteeing the σ -additive of μ is that m is regular in each variable. We denote the scalar measure $B \longmapsto (m(B))(E), B \in \mathcal{B}$, by m_E for each $E \in \mathcal{E}$.

Proposition 3.3. Let $m: \mathcal{B} \to \mathcal{M}_+(\mathcal{E})$ be a positive measure-valued measure.

$$v_{\mathcal{M}(\mathcal{E})}(m)(B) = \beta_{\mathcal{X}}(m)(B) = v_{\mathcal{L}(\mathcal{X}, \mathcal{M}(\mathcal{E}, \mathcal{X}))}(m^{\mathcal{X}})(B) = m_{\Sigma}(B)$$

for all $B \in \mathcal{B}$.

Proof. i)

$$v(m)(B) = \sup_{j=1}^{n} ||m(B_j \cap B)||$$
$$= \sup_{j=1}^{n} m(B_j \cap B)(\Sigma)$$
$$= m(B)(\Sigma)$$
$$= m_{\Sigma}(B).$$

ii)

$$\beta_{\mathcal{X}}(m)(B) = \sup_{\{x_j\}\{B_j\}} \|\sum_{j=1}^n x_j m(B_j \cap B)\|_{\mathcal{M}(\mathcal{E},\mathcal{X})}$$

$$= \sup_{\{x_j\}\{B_j\}} \sup_{\substack{\{x^*\}\{E_k\}\\|c_k| \leq 1}} |\sum_{j,k} c_k \langle x_j, x^* \rangle (m(B_j \cap B))(E_k)|$$

$$= \sup_{\substack{\{x^*\}\{B_j\}|c_k| \leq 1\\|\{x_j\}\{B_j\}|c_k| \leq 1}} |\sum_{j,k} c_k \langle x_j, x^* \rangle \mu((B_j \cap B) \times E_k)|$$

$$= \sup_{j} \sum_{j,k} |\langle x_j, x^* \rangle |\mu((B_j \cap B) \times E_k)|$$

$$= \sup_{j} \sum_{j} |\langle x_j, x^* \rangle |\mu((B_j \cap B) \times \Sigma)|$$

$$= \sup_{j} \sum_{j} |\langle x_j, x^* \rangle |m_{\Sigma}(B_j \cap B)|$$

$$= m_{\Sigma}(B)$$

where $c_k \in \mathbb{C}$.

$$v(m^{\mathcal{X}})(B) = \sup_{j=1}^{n} \|m(B_{j} \cap B)\|_{\mathcal{L}(\mathcal{X}, \mathcal{M}(\mathcal{E}, \mathcal{X}))}$$

$$= \sup_{j=1}^{n} \sup_{\|x\| \le 1} \|xm(B_{j} \cap B)\|_{\mathcal{M}(\mathcal{E}, \mathcal{X})}$$

$$= \sup_{j=1}^{n} \sup_{\|x\| \le 1, \|x^{*}\| \le 1} |\sum_{k} \langle x, x^{*} \rangle c_{k} m(B_{j} \cap B)(E_{k})|$$

$$= m_{\Sigma}(B).$$

Corollary 3.4. Let $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ be an order bounded measure-valued measure with modulus $|m|_{\mathcal{M}}$. Let $f: \Omega \to \mathcal{X}$ be an $(|m|_{\mathcal{M}})_{\Sigma}$ -Bochner integrable function. Then f is m_E -Bochner integrable for each $E \in \mathcal{E}$ and m-integrable in $\mathcal{M}_v(\mathcal{E}, \mathcal{X})$. The equality

$$\left(\int_{B}f\otimes dm\right)(E)=\int_{B}fdm_{E}$$

holds for all $B \in \mathcal{B}$ and $E \in \mathcal{E}$. Moreover,

$$\big(v_{\mathcal{M}_v(\mathcal{E},\mathcal{X})}\big(\int f\otimes dm\big)\big)(B)\leq \int_B \|f\|_{\mathcal{X}} d(|m|_{\mathcal{M}})_{\Sigma}.$$

For order bounded measure-valued measures m, the m-integrability of strongly measurable \mathcal{X} -valued functions is equivalent to their Pettis integrability with respect to an associated scalar measure.

Proposition 3.5. Let $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ be an order bounded measure-valued measure with modulus $|m|_{\mathcal{M}}$. A strongly m-measurable function $f: \Omega \to \mathcal{X}$ is m-integrable in $\mathcal{M}(\mathcal{E}, \mathcal{X})$ if and only if it is Pettis $(|m|_{\mathcal{M}})_{\Sigma}$ -integrable in \mathcal{X} . In this case, f is Pettis m_E -integrable in \mathcal{X} for each $E \in \mathcal{E}$ and the equality

$$\big(\int_B f \otimes dm\big)(E) = \int_B f dm_E$$

holds for all $B \in \mathcal{B}$ and $E \in \mathcal{E}$.

Proof. To show this proposition, it is sufficient to show that

$$\left(\int_{B} f \otimes dm\right)(E) = \int_{B} f(t)\mu(dt \times E).$$

Since all simple functions are $m^{\mathcal{X}}$ -integrable, above equality is true for simple f_n . As general proof method of integral, it is satisfying the equality for the function f such that simple functions f_n converges to f $m^{\mathcal{X}}$ -a.e. And $\{(f_n m^{\mathcal{X}})(\cdot)(E) : E \in \mathcal{E}, n = 1, 2, \ldots\}$ is uniformly countably additive if and

only if $\{\int |\langle f_n, x^* \rangle| \mu(dt \times E) : ||x^*|| \le 1, n = 1, 2, ...\}$ is uniformly countably additive if and only if f is m_{Σ} -Pettis integrable.

Remark 3.6. If m is positive and $\beta_{\mathcal{X}}(m)(f) < \infty$, then $\int_{\Omega} ||f||_{\mathcal{X}} dm_{\Sigma} < \infty$. See [4].

Proposition 3.7. Let $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ be an order bounded measure-valued measure. Then for any Banach space \mathcal{X} , we have $\beta_{\mathcal{X}}(m)(\Omega) < \infty$ and $\beta_{\mathcal{X}}(m)$ is continuous.

Proof. We have

$$\beta_{\mathcal{X}}(m)(E) = \sup\{|\sum_{j,k} \langle x_k m(B_k \cap E)(B_j), x_j^* \rangle| : ||x_k||, ||x_j^*|| \le 1\}$$

$$\le (|m|_{\mathcal{M}}(E))(\Sigma)$$

$$\le (|m|_{\mathcal{M}})_{\Sigma}(E),$$

so $\beta_{\mathcal{X}}(m)(\Omega)$ is finite. Because $|m|_{\mathcal{M}}: \mathcal{B} \to \mathcal{M}_+(\mathcal{E})$ is a measure, it follows that $\beta_{\mathcal{X}}(m)$ is continuous.

For order bounded measure-valued measures, we have the following simplified versions of the convergence theorem of Section 2. We state them without proof.

Theorem 3.8. (Egorov) Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces and \mathcal{X} a Banach space. Suppose that $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ is an order bounded $\mathcal{M}(\mathcal{E})$ -valued measure. Let $f_n, f: \Omega \to \mathcal{X}, n \in \mathbb{N}$ be m-measurable functions such that $f_n \to f$, m-a.e. Then a) for any $\varepsilon > 0$, there is a set $B \in \mathcal{B}$ such that $\beta_{\mathcal{X}}(m)(B^c) < \varepsilon$ and $f_n \to f$ uniformly on B. b) $f_n \to f$, $\beta_{\mathcal{X}}(m)$ -measure.

Theorem 3.9. (Vitali) Let (Σ, \mathcal{E}) , (Ω, \mathcal{B}) be measurable spaces and \mathcal{X} a Banach space. Suppose that $m: \mathcal{B} \to \mathcal{M}(\mathcal{E})$ is an order bounded $\mathcal{M}(\mathcal{E})$ -valued measure with modulus $|m|_{\mathcal{M}}$. Let $\langle f_n \rangle$ be a sequence from $\mathcal{L}_1(\beta_{\mathcal{X}}(m))$ with f_n Pettis $(|m|_{\mathcal{M}})_{\Sigma}$ -integrable functions and let $f: \Omega \to \mathcal{X}$ be m-measurable. Assume that a) $f_n \to f$ in $\beta_{\mathcal{X}}(m)$ -measure or a') $f_n \to f$, m-a.e. b) $\lim_{\beta_{\mathcal{X}}(m)(A) \to 0} \beta_{\mathcal{X}}(m)$ $(f_n\chi_A) = 0$, uniformly for $n \in \mathbb{N}$. Then $f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n - f) \to 0$. Furthermore, the function f is m-integrable in $\mathcal{M}(\mathcal{E}, \mathcal{X})$ and $\int_{\mathcal{B}} f_n \otimes dm \to \int_{\mathcal{B}} f \otimes dm$ in $\mathcal{M}(\mathcal{E}, \mathcal{X})$, uniformly for $B \in \mathcal{B}$ as $n \to \infty$. Conversely, if $f \in \mathcal{L}_1(\beta_{\mathcal{X}}(m))$ and $\beta_{\mathcal{X}}(m)(f_n - f) \to 0$ as $n \to \infty$, then conditions a) and b) are satisfied.

References

- J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977.
- [2] N. Dinculeanu, Vector integration and Stochastic integration in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience Publication, 2000.
- [3] I. Dobrakov, On integration in Banach spaces, I, Czechoslovak Math. J. 20 (95) (1970), 511–536.

- [4] _____, On integration in Banach spaces, II, Czechoslovak Math. J. 20 (95) (1970), 680-695.
- [5] _____, On representation of linear operators on $C_0(T,X)$, Czechoslovak Math. J. 21 (96) (1971), 13-30.
- [6] M. K. Im and B. Jefferies, Bilinear integration for measure valued measure, Preprint,
- [7] B. Jefferies, Evolution Processes and the Feynman-Kac Formula, Kluwer Academic Publishers, Dordrecht/Boston/London, 1996.
- ____, Advances and applications of the Feynman integral, Real and stochastic analysis, 239-303, Trends Math., Birkhäuser Boston, Boston, MA, 2004.
- [9] B. Jefferies and S. Okada, Bilinear integration in tensor products, Rocky Mountain J. Math. 28 (1998), no. 2, 517–545.
- [10] B. Jefferies and P. Rothnie, Bilinear integration with positive vector measures, J. Aust. Math. Soc. 75 (2003), no. 2, 279-293.
- [11] I. Kluvánek, Integration Structures, Proc. Centre for Mathematical Analysis 18, Australian Nat. Univ., Canberra, 1988.
- [12] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, North Holland, Amsterdam, 1976.
- [13] K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951.

Man Kyu Im Department of Mathematics HAN NAM UNIVERSITY Daejon 306-791, Korea

E-mail address: mki@hannam.ac.kr

BRIAN JEFFERIES SCHOOL OF MATHEMATICS The University of New South Wales NSW 2052, Australia E-mail address: b.jefferies@unsw.edu.au