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SPHERICAL SUBMANIFOLDS WITH FINITE TYPE
SPHERICAL GAUSS MAP

BANG-YEN CHEN AND HUEI-SHYONG LUE

ABSTRACT. The study of Euclidean submanifolds with finite type “clas-
sical” Gauss map was initiated by B.-Y. Chen and P. Piccinni in {11]. On
the other hand, it was believed that for spherical submanifolds the con-
cept of spherical Gauss map is more relevant than the classical one (see
[20]). Thus the purpose of this article is to initiate the study of spherical
submanifolds with finite type spherical Gauss map. We obtain several
fundamental results in this respect. In particular, spherical submanifolds
with 1-type spherical Gauss map are classified. From which we conclude
that all isoparametric hypersurfaces of S”*1 have 1-type spherical Gauss
map. Among others, we also prove that Veronese surface and equilat-
eral minimal torus are the only minimal spherical surfaces with 2-type
spherical Gauss map.

1. Introduction

Let M™ denote a Riemannian m-manifold with Laplacian operator A. A
smooth map ¢ : M™ — EN of M™ into the Euclidean N-space is said to be of
finite type if it admits a finite spectral resolution:

k
(L) o=c+3 6,
t=1

where c is a constant vector in EV, ¢,’s are non-constant EV-valued maps
such that A¢; = A, ¢ with Ay, < Ay, < --- < Ap,. Otherwise, it is said
to be of infinite type. When the spectral resolution (1.1) contains exactly &
non-constant terms, the map ¢ is called of k-type (see |6, 7, 8] for details).

Let S¥~1 ¢ EV denote the unit hypersphere of EV centered at the origin.
A spherical finite type map ¢ : M — SV~ ¢ EV of a Riemannian manifold
M into SN—1 is called mass-symmetric if the vector c in its spectral resolution
is the center of SV ~! (which is the origin of EV). Otherwise, ¢ is called non-
mass-symmetric. When M is compact, ¢ is mass-symmetric if and only if we
have [, ¢x1=0.
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Let G(n,m) denote the Grassmannian consisting of linear n-subspaces of
E™. Given an isometric immersion x : M™ — E™, the classical Gauss map
v : M™ — G(n,m) associated with x is the map which carries each p € M™ to
the linear n-subspace of E™ obtained by parallel displacement of the tangent
space T,M™. Since G(n,m) can be canonically imbedded in AE™ = IE(T:),
the classical Gauss map gives rise to a well-defined map from M™ into the
Euclidean (")-space E().

The study of Euclidean submanifolds with finite type classical Gauss map
was initiated by the first author and Piccinni in [11]. Since then many geometers
have studied such submanifolds (see, for instance, [1, 2, 3, 4, 9, 10, 12, 13, 17]).

On the other hand, for a spherical submanifold M™ in S™~1, Obata studied
in [19] the map which carries p € M™ to the totally geodesic n-sphere of S™~1
determined by the tangent space T,M"; he also computed the induced metric
on M" via his map. Since a totally geodesic n-sphere S™ of S™~! determines
a unique linear (n + 1)-space containing the totally geodesic S™ in E™, Obata’s
map can be extended to a map # of M™ into the Grassmannian G(n + 1,m)
in a natural way, known as the spherical Gauss map. The composition ¥ of

i followed by the natural inclusion of G{n + 1,m) in E(GT) s also called the
spherical Gauss map.

The geometrical behavior of the classical and spherical Gauss maps are dif-
ferent. For instance, the classical Gauss map of every compact Euclidean sub-
manifold is mass-symmetric; but the spherical Gauss map of a spherical com-
pact submanifold is not mass-symmetric in general. It was believed that in the
study of spherical submanifolds the spherical Gauss map is more relevant than
the classical Gauss map (cf. for instance, [20]).

The main purpose of this article is to study spherical Gauss map of spherical
submanifolds in the frame work of finite type theory. The main problem is

“To what extent does the type number of the spherical Gauss map determine
the spherical submanifolds?”

In section 3, we provide some basic results on spherical Gauss map. As a
by-product, we are able to extend a result of Lawson on minimal surfaces in
spheres. In section 4, we classify spherical submanifolds with 1-type spherical
Gauss map. This classification result implies that every isoparametric hyper-
surface of S"*! has 1-type spherical Gauss map. In sections 5 and 6, we prove
that the Veronese surface in S4 is the only spherical minimal surface with mass-
symmetric 2-type spherical Gauss map and the equilateral minimal torus in $°
is the only minimal spherical surfaces with non-mass-symmetric 2-type spheri-
cal Gauss map. The last section provides more results on spherical Gauss map
of spherical minimal submanifolds.

2. Preliminaries

Let M™ be a submanifold of a Riemannian manifold M™, ie., the Riemann-
ian n-manifold M™ is isometrically immersed in the Riemannian m-manifold
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M™. If V and V denote the Levi-Civita connections of M™ and M™, then the
Gauss and Weingarten formulas of M™ in M™ are given respectively by

VxY =VxY +hr(X,Y),
Vxé=—-A¢X + Dx¢
for X,Y tangent to M™ and £ normal to N, where h is the second fundamen-
tal form, D the normal connection, and A the shape operator. The second
fundamental form h and the shape operator A are related by g(A:X,Y) =
3(h(X,Y),€).

The mean curvature vector is H = (1/n) tr h. The submanifold is called min-

imal (respectively, totally geodesic) if its mean curvature vector (respectively,
second fundamental form) vanishes identically.

(2.1)

We choose a local field of orthonormal frame ei,...,€,,€n41,...,€m Such
that, restricted to M™, the vectors ej,...,e, are tangent to M and hence
€n+1s- -« 5 Em are normal to M™. We shall make use of the following convention

on the ranges of indices unless mentioned otherwise:
1<ABC,...<m; 1<i5k,...<n;n+1<rst,...<m.
Put Vxe; = 3, wi(X)ea and @XeT ZA A(X)es. With respect to the

frame field of M™ chosen above, let w! ,w" w"+1 ,...,w™ be the field of
dual frame. Then the structure equations are given by
dw? = —ng AWB, wh = —wE,
B
(2.2) dwp = —Zwé AwE + 4,
C

1
op = 3 ZKQCDWC AwP, Kgop+ Kgpe =0.

Restricting these forms to M™ we get w” = 0. Since
0=dw" = —Zw{mﬂ',

Cartan’s lemma yields w] =} hf; w? with hf; = hf;. The exterior differentia-
tion of w] = Z hi; gives the equatlon of Codazz1

R = .

tjik kg
(2.3) Lon = exhl; — > (WLt (en) + Bt (ex) +Zhw " (ex)-
£

From these we have the following Cartan’s structure equations:
(2.4) dwi:—Zw§ij, dwé:—Zw};/\wijﬂé-,
J k

3 1 % i 3 T r
(2.5) =5 D Rigwk At Rl = Kl + Y (RighGe — highly)-
T
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The Ricci tensor R,x and the scalar curvature S of M™ are defined respec-
tively by Rjx = 3, Ri;, and S = Y, Ry;. If the ambient space M™ is the
Euclidean m-space E™, then (2.5) implies that the scalar curvature S of M"

satisfies
(2.6) S =n?H|* - |||,

where |H|? and ||h||? are the squared norm of the mean curvature vector and
of the second fundamental form of M™ in E™. In particular, if M™ is immersed
in the unit hypersphere S™~!, then (2.6) yields

2.7) S =n(n~1)+n’|H - ||Al?,

where H and h are the mean curvature vector and the second fundamental
form of M™ in S™1, respectively. For M™ in S™~!, we also have (cf. [5])

(2.8) H=H-x hX,Y)=h(X,Y)-g(X,Y)x

A submanifold M is called isotropic if, at each given point p € M, the length
|h(u,u)| is independent of the choice of the unit tangent vector u € T,M.

Theorem 2.1. [11] Let ¢ : M — EN be a smooth map from a compact Rie-
mannian manifold M into the Euclidean N-space and let 7 := div(d¢) be the
tension field of ¢. Then we have:

(1) ¢ is of finite type if and only if there is a non-trivial polynomial Q(t)
satisfying Q(A)T = 0.

(ii) If ¢ is of finite type, there is a unique monic polynomial P(t) of least
degree, called the minimal polynomial, which satisfies P(A)r = 0.

(iii) If ¢ is of finite type, then ¢ is of k-type if and only if the minimal
polynomial P is of degree k.

The same results hold if T is replaced by ¢ — ¢ with

$o = (/qu* 1) /(vol(M)).

3. Some basic results on spherical Gauss map

Let V be an oriented k-plane in E™. If €, ..., € is an oriented orthonormal
basis of V, then €; A --- A €, is a decomposable k-vector of norm one which
gives €1 A - - - A ¢ the orientation of V. Conversely, each decomposable k-vector
of norm one determines a uniquely k-plane in E™. Hence, if G(k,m) denotes
‘the Grassmannian of oriented k-planes in E™, then G(k,m) can be identified

naturally with the decomposable k-vectors of norm one in E(%) = AFE™. In
this way, we have natural inclusion of G(k,m) in E(%).

In this article, we shall always regard S™~! as the unit hypersphere of E™
centered at the origin. Moreover, for an isometric immersion x of a Riemannian
n-manifold M™ into S™~ ! we identify each tangent vector v € TM™ with the

its image dx(v) under the differential dx.
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For each point p € M™, let e1,...,e, be an orthonormal basis of T, M™.
Then the n + 1 vectors X, ey,...,e, determine a linear (n + 1)-subspace in
E™. The intersection of this linear subspace and S™~1 is the totally geodesic
n-sphere determined by T,M™ as in [19]. Thus, for a spherical immersion
x: M"™ — S™~1, Obata’s map can be considered as:

(3.1) v:M"— G(n+1,m)
which carries each p € M™ to v(p) =xAe1 A+ Aey.

Let S(nﬁl)_l be the unit hypersphere in E(=%1) centered at the origin. Then
G{n+ 1,m) is a submanifold of § (Jil)—l’ which gives the natural inclusion:

LG+ 1,m) ¢ §GF) c G,
The spherical Gauss map o : M™ — E (x71) agsociated with x is thus given by
(3.2) D=XAet A Aen: M™ = G(n+1,m) C S(ﬂ:’fl)~1 c BT

The associated map & of M™ in S (x2)-1 s also called the spherical Gauss
map.

Let M be a Riemannian manifold and G a closed subgroup of the group I (M)
of isometries which acts transitively on M. An immersion f of M into another
Riemannian manifold M is called G-equivariant if there exists a homomorphism
¢: G — I{M) such that f(a(p)) =((a)f(p) for each a € G and p € M.

An important consequence of Theorem 2.1 is the following finiteness result.

Proposition 3.1. Ifx : M — 8™ 1 C E™ is an equivariant isometric im-
mersion of a compact homogeneous Riemannian n-manifold into S™~1, then
its spherical Gauss map U is of finite type. Moreover, the type number of U is
at most (/1)

Proof. Let 7 be the tension field of 7. Then 7, A7, .. .,A(nzl)T are linearly
dependent at a given point u € M. Thus there is a polynomial Q(t) of degree
< N satisfying Q(A)7 = 0 at u. Since x is equivariant, the group of isometries
of the Euclidean space acts transitively on M as well as on the tangent bundle
of M. Hence, it acts transitively on its spherical Gauss of map. Thus, we
have Q(A)r = 0 at each point in M. Therefore, Theorem 2.1 implies that
the spherical Gauss map is of finite type. Since the degree of the minimal
polynomial of @ is < (7)), the type number is at most (,+1) according to
theorem 2.1.

Remark 3.1. Proposition 3.1 shows that there exist abundant examples of nice
spherical submanifolds with finite type spherical Gauss map.

By differentiating ¥ in (3.2) we find

(3.3) ejﬁ:Zh’;kx/\el/\---/\ek_lAerAek+1A'-~Aen.
r.k
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From (3.3) and Gauss’ equation, we see that the induced metric g on M™ via
U is
(3.4) 5= {(n— 100+ 3 (s hg, - Ry Jod @ .
1.k r
Since the Laplacian of ¥ is defined by
(3.5) AD = — Z eieiv+ (Vei ei)ﬂ,
i
we obtain from (3.3) that
Av=nHAeit A+ Aen + ||h|[*F
—nY xNey A Nex-1 ADeHAex1 A Aen
(3.6) k
= > RGhGxAer A A eg Ao A ep A-eAep.
t S~ S~~~
7,8,%,5,k k—th j—th
By applying (3.6), (2.8) and the last equation in (2.7), we obtain
A= ||h|*o+nH Aes A--- Ne,

—an/\el/\---/\ek_l AD, HANegs1 A Ney

(3.7) i
+ Z RipXAerAw A es Ao e Ao Aen.

8,3,k k—th j—th

A map between two Riemannian manifolds is called harmonic if its tension
field, 7 = div(d¢), vanishes identically. For an isometric immersion, the tension
field and the mean curvature vector field differ only by the dimension of the
submanifold.

In [21], Rub and Vilms proved that a Euclidean submanifold has parallel
mean curvature vector if and only if its classical Gauss map is harmonic. On
the other hand, for spherical Gauss map we have the following.

Proposition 3.2. Let x : (M™,g9) — S™! be an isometric immersion of a
Riemannian n-manifold. Then we have:
(a) Obata’s map v : (M™,g) — G(n+1,m) is a harmonic map if and only
if x: (M"™,g) — S™ ! is a minimal immersion;
(b) The spherical Gauss map v : (M™,g) — E(3) is harmonic if and only
if x: (M?",g) — S™1 is totally geodesic.

Proof. Statement (a) follows from (3.7) and the fact that decomposable (n+1)-
vectors of the forms:
erNer N~ Nen, XNe1N---Ne. N+ Ney,

provide a basis for the tangent space of G(n + 1,m). Statement (b) is an
immediate consequence of (3.7). u
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Lawson proved in [18] that the spherical Gauss map of minimal surfaces in
S3 are minimal surfaces in S (possibly with branched points). An immediate
application of Proposition 3.2 is the following extension of Lawson’s result.

Proposition 3.3. Letx : (M2, g) — S™ ! be a minimal surface without totally
geodesic points. Then the Obata map v : (M2, §) — G(3,m) is a minimal
wsometric immersion (with respect to the induced metric §).

Proof. For the minimal isometric immersion z : (M?2,§) — S™~!, (3.4) reduces
to

(3.8) §=(0-K)yg,

where K is the Gauss curvature of (M2, g). Since harmonicity is preserved
under conformal change of metric, Proposition 3.2 implies that Obata’s map v
is harmonic. Thus this immersion is a minimal immersion, since it is isometric.

0

4. Spherical submanifolds with 1-type spherical Gauss map

In this section, we completely classify spherical submanifolds with 1-type
spherical Gauss map.

Theorem 4.1. A submanifold of S™' has mass-symmetric 1-type spherical
Gauss map if and only if it is a minimal submanifold of S™ ! with constant
scalar curvature and flat normal connection.

Proof. If the spherical submanifold has mass-symmetric 1-type spherical Gauss
map 7, the Av and & are proportional. Since the second and third terms on
the right hand side of (3.7) are perpendicular to 7, we see from (3.7) that o
is mass-symmetric 1-type if and only if H = Ry, = 0 and ||R||? is constant.
Hence, by applying this and (2.7) we obtain the desired result. O

The standard imbedding of S! (%) x §1 (%) in §2 is called Clifford minimal

torus.

Theorem 4.2. A non-totally geodesic surface in S™ 1 has mass-symmetric
1-type spherical Gauss map if and only if it is an open portion of the Clifford
minimal torus (lying fully in o totally geodesic 3-sphere S2 C S™~1).

Proof. Tt is easy to verify that the spherical Gauss map of the Clifford minimal
torus satisfies AU = 2. Thus, it has mass-symmetric 1-type spherical Gauss
map. The converse follows from Theorem 4.1 and the fact that the only minimal
surfaces of S™~! with constant Gauss curvature and flat normal connection are
open portions of a totally geodesic 2-sphere or of the Clifford minimal torus. O

Theorem 4.3. An n-dimensional submanifold of S™ ' has non-mass-sym-
metric 1-type spherical Gauss map if and only if it has constant scalar curvature
and it is immersed in a totally geodesic (n + 1)-sphere St C S™7! as a
hypersurface with nonzero constant mean curvature.
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Proof. Let x : M™ — S™ 1 be an isometric immersion of a Riemannian n-
manifold into S™~1. If the spherical Gauss map # of X is non-mass-symmetric
1-type, then we have AP = Ap(¥ — c) for some vector ¢ and real number A,.
Thus we have

(4.1) (AD); = Ap(P);)

where (-); = e;(:).
On the other hand, by a direct long computation, we obtain from (3.7) that
(4.2)
ei(Aﬁ)
_'”h”117+||h” thx/\el /\ [ /\.../\en
——
ik k—th
+2nDe HAet A Nen+nd hyHANer Ao A ep AoerAep
~
ik k—th
—nZw’?(ei)x/\el AN Nej—1 N eg /\ej+1/\-~/\Dekﬁ/\--~/\e
’ ~ S——r

ik j—th k—th

—nY RxAer A Aeji A er Aejpi A ADg HA- Aey

i#k ~ S

I j~th k—th

+nZ(ADekgei,ek)D—n;x/\el/\-~/\DeiDekH/\---/\en
k—th

+ eiR, )X+ R e;)Aer A+ A es A-A e A---Ae
TSX’J:’C i sgk sik z) 1 s (d n

k—th j—th
t—th
+Z Z stk{hex/\el/\ A et ANos A eg Ao A ep Aot Aey
™S dikit k—th j—th

i—th
+w?(e,-)x/\61/\-~/\ e;: AN eg Aor A ey /\'-'/\en}
—— ~—~—— ~—

k—th j—th
+ D (Ropwhes) — REpwl(e)) X Aer A=A e A=A ep A Aen.
718:0:k k—th i—th

Case (a): H = 0. In this case, equation (4.2) reduces to

el(AD)
_”h”2 +HhH thkx/\el/\'--/\ er No-Aey
(4.3) et
+ &Ry )X+ R e) NetA---A es AN e A+ Ae
rg,;k ' SJk sk z) ! -’ N n

k—th j—th
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+>0 N stk{ LXAEL A A NN e A A & A Nen
s 3kt Paerd k—th '
— - j—th
h

+) whe)XAer A A en AN e Are A e /\-~/\en}

~ S~ ~—

£—th k—th Jj—th
+Z (R’;jkwg(ei)—Rtsjkwg(ei))x/\el/\--‘/\ et N-o- N er Aot Aey.
7,8,5,k k—th j—th

By comparing (3.3), (4.1) and (4.3), we get ||h||? = ik = 0. Thus, M™ has
constant scalar curvature and flat normal connection. So, Theorem 4.1 implies

that 7 is mass-symmetric 1-type. This is a contradiction.
Case (b); H # 0. Since the term DeiI-fI/\el A-+-Ae, appears only in @ei (AD)
of (4.2), not in e;(¥), we know from (3.3), (4.1) and (4.2) that DH = 0. Thus,

M™ has parallel nonzero mean curvature vector in S”!. So, it has nonzero

constant mean curvature. Therefore, equation (4.2) reduces to
(4.4)
ei(Aﬁ)

:nthkﬂ/\el/\---/\ek_l/\e,«/\ekﬂ/\---/\en
r.k

+ [|Al 27 + ||Al|? Zhlkx/\el/\~'/\ek_1/\e,«/\ek+1/\-~-/\en

+ > {(eijok)x+R§jke1-}/\el/\---/\ es Ao A ep AvorNep

T80,k k~th j—th
+> ; stk{ EXAerA-A e NN eg Ao-A ep Ao Aey
™8 gk EF t—th k—th j—th

+wh(e)XNer AN en AN eg Ao A ey /\~-~/\en}
S~ S~

~—
L—th k—th j—th
+ Z (Ryjpwiles) — Rijpwi(e)) X Aer A A ey AN er Ao Aen.
718:0,k k—th j—th

From (3.3), (4.1) and (4.4) we know that ||h|| and scalar curvature are con-
stant. Also, we have

nY hHANe A Aex_1 Aep Aerpi A Aen

rk
(4.5)
+ Z jokei/\el/\"'/\ es No- N e N~ Ney =0.
7,8,,k M -

k—th j—th

Put H = |Hle,q1. It follows from (4.5) that Ry =0forr,s >2n+2
and j,k = 1,...,n. We also find R;, = 0 from DH = 0. Thus, the normal
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connection of M™ in S™~! is flat. Therefore, (4.5) yields

m—1
(4.6) > hhentiAer A Aek_i Aer Aeki A Aen =0
r=n+2 k
We see from (4.6) that the first normal space Im#h is spanned by en1.
Therefore, by the reduction theorem of Erbarcher, we conclude that M™ is
contained in a totally geodesic S**' ¢ §™1.
Conversely, if M™ has constant scalar curvature and it lies in a totally geo-
desic $"*! c §™~! with nonzero constant mean curvature, then (4.4) reduces
to

A7) e(AD) =[RPY R xAer A Aex1 Aep Aekri A Aen.
r.k

From this we have e;(A7) = ||h||%¢;(5). Thus, A(Z — ¢) = ||h|[>D for some
nonzero vector ¢. Since ||h|| is constant, this shows that ¥ is non-mass-symme-
tric 1-type. O

Combining Theorems 4.1 and 4.3 yields the following remarkable result.

Corollary 4.1. Every isoparametric hypersurface of S**1 has 1-type spherical
Gauss map.

Remark 4.1. Theorem 4.1 and Theorem 4.3 determine completely spherical
submanifolds with 1-type spherical Gauss map. On the other hand, Proposition
3.1, Theorem 4.1 and Theorem 4.3 imply that there exist rich examples of
spherical submanifolds with higher type spherical Gauss map. In particular,
most equivariant isometric immersions of compact homogeneous Riemannian
spaces into S™~! have high finite type spherical Gauss map.

Remark 4.2. Another implication of Theorems 4.1 and 4.3 is that finite type
Euclidean submanifolds (cf. [6]) and spherical submanifolds with finite type
spherical Gauss map are quite different. For instance, a submanifold in E™ is
of 1-type if and only if it is either a minimal submanifold of E™ or a minimal
submanifold of a hypersphere of E™. On contrast, according to Theorems
4.1 and 4.3, most spherical minimal submanifolds (except those with constant
scalar curvature and flat normal connection) have higher type spherical Gauss
map. In the next two sections, we completely classify spherical minimal surfaces
with 2-type spherical Gauss map.

5. Veronese surface and its spherical Gauss map

For a natural number &, the set of spherical harmonic polynomials of degree
k of three variables is a (2k + 1)-dimensional vector space. Consider the unit
sphere S2* in the vector space with the standard inner product. We have an
isometric minimal immersion: ¥ : S*(K) — S$%¥ of the 2-sphere S?(K) of
curvature K = 2/(k(k + 1)) into S2*, which is known as a Veronese-Boriivka



SPHERICAL SUBMANIFOLDS WITH FINITE TYPE SPHERICAL GAUSS MAP 417

sphere. The immersion 13 : $*(3) — S* is known as the Veronese surface.
Wallach [22] proved that any minimal surface of positive constant curvature X
in a unit sphere is an open part of a Veronese-Bortivka sphere.

Let (z,y,2) be the natural coordinate system of E* and (uy,...,us) that

of E®. The minimal immersion v of S?(%) into S* C E® can be expressed
explicitly as

“ Yz “ Tz u Ty u mQ—yQ
1= =, 2 = ) 3= —=> 4 = 3
(5.1) V3 V3 V3 2v/3
1
us = g(a:2 +y* —22%)

Theorem 4.1 implies that a totally geodesic 5% in S has 1-type spherical
Gauss map. The next result provides a very simple characterization of Veronese
surface in terms of 2-type spherical Gauss map.

Theorem 5.1. A minimal surface M of S™ ! is an open portion of the
Veronese surface (lying fully in o totally geodesic S* C 8™~1) if and only
if it has mass-symmetric 2-type spherical Gauss map.

Proof. First, assume that M? is an open portion of the Veronese surface defined
by (5.1). If we choose the spherical coordinates:

@ = +/3sin (—%) cos(\/_) = /3sin (-\1;:) sin (%),

(5.2)
zZ = \/§COS (\/l“g)
on S%(+/3), then the metric tensor g and the Laplacian operator are
(5.3) g = du? + sin? ( )dv ,
V3
(5.4) A=t ot(i)i P e ()T
. \/g C F) ou? CSC \/_3- 8’[)2 .

Let us choose

7] 0 .
(5.5) el = o €2 = CSC(})a , (el,el) %, h(e1,ez) = %_

Then ey, €5, €3, 4 form an orthonormal frame field. Moreover, we have

1
h?l = h4112 = ﬁ’ h‘%z h11 = h%Q =0,
(56) 4_o9.2_ 2 v N2 R oD -4
w3 = 2w :*cot(——)w = — = -.
3 1 \/?; \/g “ H 3
By applying (3.7), (5.6) and a long computation we find
~ 4. 4 ~ 32. 56
(5.7) AV:§V~§X/\63/\64, A? :gy—?x/\eg/\ez;
Thus, if we put
~ 4. 1 2
(5.8) =0+ x/\eg/\e4, U3 =0 —=xNe3 ey,

5 5 5 5
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we obtain o = 74 + U3 with Ay = %171, and APz = 493, which implies that the
spherical Gauss map is mass-symmetric and of 2-type.
Let us use the following convention on the ranges of indices:

1<4,5,k, <2 3<,s5t<4; 5<a,B,y<m-—1.

Next, assume that x : M? — S™1 is a minimal surface with mass-symme-
tric 2-type spherical Gauss map.We choose e€,41, - . ., €m—1, &m 0l such way that

(5.9) em =X, Ag = =24, _, =0

Then A, = —I and R}, =0, (r,s) # (3,4),(4,3). Thus, we get from (3.7)
that

A = ||h||*0 + 2KP x Aes A eq,
5.10
(5.10) KD = ST (h3;h%; — h;h3)),

J

and
A%5 = (Al[RI]? + A7 + 2(KP|Al* + AKP)x Aes Ae
(5.11) +2KPA(xAesAed) =2 [AII3Ve, D
—4ZK]~D@EJ,(X/\63 A eq),

where ||A]|? = ¢;||A||? and KP = ;K P.
From (2.1) we have

6j(X/\63/\€4)=6j/\€3/\64—2h?jX/\6i/\64

1

(5.12) — Y hbxAesAei+ Y whle)xAea Ae
% @
+ waf(ej)x/\ es N eqy.
[e3

Moreover, we obtain from (2.3) and (5.12) that

A{xAezNeq)
= 2Ky

(2 1R + 3 g 1P+ 3 [ 2) x A s A

- Qng’(ej)ej Neqg Neg— 2wa(ej)ej AesAeq

g

(5.13)

]7a
+thj;jx/\eiAe4—thj;jx/\e,~/\eg
i i
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+2Z wa (e5) wg‘(ej))x/\ei A ey
+ Z ej(w(ef))x Aes Aea —ej(wie;))x Aes Aeg)
—Z w3e] w§ ej +§:w3 e;)w x/\e4/\ea
+ Z wy(ej)w§ (e) + Zw4 ej)wi(e;))x Aes Aeq.

Jse B

By combining (5.11), (5.12) and (5.13) and applying (2.3) of Codazzi and
the minimality of M? in §™~1, we obtain

A% =(AJAII? + ||Al|* + 4(KP)2)7 + {2A K"
+2KP (2R + 2+ 3 (I + ] 1) ) hxc A ea Aes
B
—2Z||h|12 piXAerAe — R xNexAey)

+4ZKD X/\Ci/\64—h,;1j)(/\6i/\€3“'6j/\€3/\64)

+4KDZ wa (ej) w?(ej))x/\ei/\ea
(5.14)
~|—4KDZw3 ejle; NegAeq — 4KDZw2‘(ej)ej Neg A eq
7o R
+ZZ{KD (Ve,wg) €5 — wilej)ws (e5) ng(ej

]Q

+2 Kijg‘(ej)}x/\ es A eq

—2 Y K ((Ve,wf) €5 — wileg)ws(e;) = D wh e )wiles)
Jrox 8
+ QKJDwZ‘(ej)}x Aes A eq.

If 7 is mass-symmetric a 2-type, then we have 0 = 7, + ¥, with A, =
Aplp, Alg = Aglg, Ap # Aq. From this we get

(5.15) A%D = (Ap + A AT = AP

Since € Ae3 Aeq, € Aeq Aey appear only in A%5, and not in AD or in 7, if
follows from (5.14) and (5.15) that KPw§ = KPw$ = 0. Hence, by continuity,
we see that exactly one of the following two cases occurs:

(a) KP =0 on M?%;

(b) wg = w§ =0 and KP # 0 on some non-empty open subset U of M2,
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Case (a): KP =0 on M?. In this case, M? is a minimal surface of a totally
geodesic $* C S™~!. Thus (5.10) and (5.14) reduce to

(5.16) Ab = ||h|)*D,
(5.17) A5 = A||A)*0 + ||A||*D
+ 226j||7zl|2{h‘;’jx/\ ex Nes — hy;xANep Aes}.
J

By applying (5.15), (5.16) and (5.17), we find
(5.18) I1Al3h3) + 1A1I3RS, = 1AlFhT, — IRNI3AS, = 0.

Hence, ||h|| is constant. Thus, 7 is of 1-type by Theorem 4.1, which is a
contradiction.
Case (b) w§ =w§ =0,a=5,...,m—1 and KP # 0 on U. The first normal

bundle Im A on U is a rank 2 parallel subbundle of the normal bundle. Thus,
U is a minimal surface in a totally geodesic $* € §™~1 and (5.14) reduces to

A5 = {A[[R])® + [|h|]* + 4(K )}
+AKP{1+||h)|*} x Aes Aes + 20K  x Nes Aes

+22||B||?( 1 XANexAep —hyx Aep Aer)
(5.19) i
‘42}(]1’){61‘/\63/\64—th’ij6¢/\64
7 i

- thjx/\ ez N\ 6«L‘}.
i

Since e; A ez A eq appear only in A%, (5.10), (5.15) and (5.19) imply that
K7D is constant. Therefore (5.19) becomes
A% = {A|AI? +|[A]* + 4(KP)?}o
+4KD{1 -+ ||]A'L||2}X/\63 Aey
+2Z ||fz||3( 1 XNezNer —hyx Aer Aeyr).
7,7

(5.20)

It follows from (5.10), (5.15) and (5.20) that U has constant curvature. Hence,
a result of [16] implies that U is an open portion of the Veronese surface. So,
by continuity, the whole M? is an open portion of the Veronese surface. d
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6. Spectral characterization of equilateral minimal torus

Consider the map ¥ : E? — ES defined by

_ V3t+sy . (V3t+s V3t —s
Y(s,t):%(cos( 3:5/; ),sm( 3\;; ),Cos(——g—t\é—),

sin (ﬁt _ S) , COS V/2s,sin \/55)
V2

Then ¥ gives rise to an isometric immersion y from a flat torus 72 into S° C E°.

The metric tensor on T2 induced from (6.1) is g = ds® +dt?. It is easy to verify

that Ay = 2y. Thus y : 7% — S is a minimal flat torus T2 in S3, which

is known as the equilateral minimal torus. This minimal torus can also be

expressed as:

(6.1)

(6.2) g(0,7) = %(cos 0,sin 6, cos 7, sin T, cos(f — 7),sin(6 — 7)),

with 6 = (V/3t + s)/v/2 and 7 = (v/3t — 5)/v/2. However, the metric tensor on
T? induced from (6.2) is given by

g= ;(dOQ — dfdr + dr?)
instead.

Theorem 6.1. A minimal surface of S™ ! is an open portion of the equilateral
minimal torus (lying fully in a totally geodesic §° C S™~1) if and only if it has
non-mass-symmetric 2-type spherical Gauss map.

Proof. First, assume that M? is an open portion of the equilateral minimal
torus in S C E° defined by (6.1). If we put

8 8 -~
1= 2= 7 3= V2 (h(e1,e1) +9),

ey = \/§h(€1,62), es = Dg/ps€3, €6 =1,

(6.3)

then es, e4, €5, eg are orthonormal normal vector fields. A direct computation
gives

1 (o7
(6.4) hffl:—th:h‘%z:E, hiy = hiy = hay = h§; =0,
Wi=wi=0, wi=uw, Wi=-uw? a=56;4,7=12

It follows from (5.10), (5.15) and (6.4) that the spherical Gauss map satisfies

AD =20 — 2§ ANeg A ey,
6.5
( ) A217:8ﬂ—16g/\€3/\€4~461/\64/\€5—4€2/\63/\65.

Putc=21(0+gAnesAhes—er /\64/\65—62/\63/\65>. Then we see that ¢
is a constant vector by differentiating ¢ and applying (2.1), (3.3), and (6.4). If
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we put

ju—

4 1
(6.6) V1=1/+—§/\63/\64—§C, 17225(0—?]/\63/\64),

w

a straight-forward long computation yields 7 = ¢+ 71 + ¥, with APy = 27, and
Ay = 85. Thus, 7 is non-mass-symimetric 2-type.

Conversely, assume M? has non-mass-symmetric 2-type spherical Gauss
map. If we choose ey,es,€3,...,6, as in the proof of Theorem 5.1 and use
the same convention on the range of indices, we obtain (5.9), (5.11) and (5.14).

From (3.3) and (5.10), (5.14), and a very long computation, we obtain

eyl = Z(hgkx AerANe —hxAex Aer),
ex(A7) = ||h|Z5 + ||A]| Z (hox Aer Ae —higx Aea Aey)
D
(6.7) +2KP x Neg Neg+2K {ek/\ea/\€4—2h§kx/\ej/\e4
J
+) hhxAejNes— Y w(ex)xAeaAea
o

J

+ Zwi‘(ek)x/\ es A ea}
«

and
(6.8) ) R
ex(A%9) = {ex(AlIRI*) + ex(|[||*) + 8BKP K}

+2{ex(AKP) + 2KP + 2KP|R)|* + KP Z (15117 + 115 117)
+2KD||E||i+KDZ(||w§||i+l|wfnk)}er3Ae4
8
- 22 (1B1eR5; + lIAlFer(hE;))x Aer Aey
+2Z [13]2h3; + 1] Zex(hT;))x A ez Aer
+4Z {Zh XAe;Neg— Zh X Ae;N\es
—ng eJ x/\ea/\e4——2w4 e] /\egAea—eJ/\e3Ae4}

+4ZKD{Zek )x/\ez/\e4—Zek(h IxAe;Aes
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+ Zek wi(ej))xAesNeq — Zek(wf(ej))x/\ es A ea}

(a4

+2KP Z{Q —ht sws (€)X Aei Aeg
+ [(Ve].w3) — wi(ej)ws(e;) Zw3 ej)wh(e;)]x AesAeg
— [(Ve,ws) €5 — wi(ej)ws(e;) Zw4 ej)wh(ej)]x Aes Neq

+2w5(ej)e; Aes Neq — 2wi(e;)e; Aez A 6a}

+2KDZ{2ek (h3ws (e;) — hi Jwi(e)) X Aei Aea

R
+er| (Ve,ws) €5 — wi(ej)ws (e;) ng ej)w ]x/\e4/\ea}
~2KDZek[(Vejw4) — wi(e;)ws (e;) Zw4 ej)wh(e;)]x Aes Aeq
R

+4KDZek(w§‘(ej))ej NegN\ ey — 4KDZek wg(ej))e; Nes Aeg
j?a J’a
+ (AR + A+ 4EP):) S (hhx Aer Aer — hjx Aes Aey)
+2{AKP + KP(2+ 2Rl + 3 (141 + 1£1%)) }
8
><{ekA63A64—Zh?kXA€j/\64+Zh§kx/\€j/\63
] J
_Zw3 ek x/\e4/\ea+2w4 e x/\e3/\ea}
—QZHhH hQJ{ek/\el /\er+w1(ek)x/\eg/\er—{—Zhikx/\es/\er
—hrkv—ka (eg)x Nep Aeg — Zw ekx/\el/\ea}
+22||h“2h {ekAeg/\er—wl(ek)x/\el/\er+2h§kx/\es/\er

+h1kv+Zw ek x/\eg/\es—i—Zw ek x/\eg/\ea}

+4ZKDh3 {ek/\ei/\€4+Zwi(ek)x/\eg/\e4+hikx/\e3/\e4
¢

- thzx/\ ei ANep —wilep)X Aej Aes + Zwi‘(ek)x/\ e A ea}
£ a
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_4ZKJDh‘}j{ek/\ei/\eg—}—hzgx/\eg/\ei+w§(ek)x/\ei/\64
+Zw§‘(ek)x/\ei/\ea+wa(ek)x/\e¢/\eg—hka/\e3Ae4}

o ¢
_42Kf{2w§(ek)ei/\e3/\e4—thkej/\ei/\a;
—Zw3 ek)ej/\e4/\ea+2hke]/\e,/\eg+Zw4(ek)e]A63/\ea}
+2§:{K (Ve;08) €5 — wi(e;)wf ea)_zws (ej)wi(e;)]
+2K})w§‘(ej)}{ek/\e4/\ea—Zhikx/\ei/\ea—w3(ek)x/\e3/\ea

+ wa ex)XNegNeq +ws(ex)x Aes Aey+ ng(ek)x/\ €4 /\Eﬂ}
B

—22{ [(Ve,wg) e5 — wj(e5)w§ (e;) Zw4(e] Jwl(e;)]
+2K; wj‘(ej)}{ek NesAey — Zhikx Ne; A eg

+ wier)X Aeg Aeq —wlex)X Aes Aeyg + Zwé’(ek)x ANeg ey
8

+Zwﬂ<ek>ergAeﬁ}+4KDZ i (o) — hug (e5)
x{ek/\ei/\ea+zwi(ek)erg/\ea—l-thkx/\er/\ea
£ r

—wi(er)xAe; Aez —wiler)Xx Ae; Aeg + ng(ek)x Ae; A e,g}
B

+4KP Zw;; (eg){ zjwj(ek)eZ ANegNeg + hjkeg, ANegNeg

]0t

+ws(ex)e; Neg Aeg+ Zwa(ek)ej NegNeg— Z hikej Ae; A eq
B

i
—wi(er)e; Aes Aeq — wa(ek)ej Aeq A eg}
B
—4KP Zw4 (ej {Zw erx)e; NesNeg — ]keg/\e4/\ea
],

- Z hiej Ae; Aeq +wiler)ej Aeg A ey — Zw3 (ex)ej Nea Neg
i B
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—wi(er)ej NesAeg+ Zwﬁ(ek)ej Aes A eg},
B

where Kﬁc = exe; K and ||iz||?k = ere;||h]|2. Since M? has non-mass-
symmetric 2-type spherical Gauss map, we have I = ¢+01 4+ with Ay = Ay,
Ay = g, Ap # Aq and nonzero vector c. Hence, we get

(6.9) er(A%0) — (A\p + Ag)er(AD) + Mphgext = 0, k=1,2.

If KD vanishes identically on M?2, then M? lies in a totally geodesic S3 C

5™=1. So, we may assume m = 4. Hence, (6.7) and (6.8) reduce to
(6.10)

ey = Z(hgkx Nei ANep —hipx ANea Aep),

ex(AD) = Hﬁ||kf/ + ||ﬁ||2(hgkx Aei Aez— R x Aex Aes),
ex(A%0) = {ex(A[R|?) + ||h]|}} 7
=2 (I1hl3eh; + Al 2ex(h3;))x Aer Aes
J

+ QZ (Hh”?kh%j + HiLH?ek(h%j))x Nea Neg
J

+ (AR]2 + [|A][*) (h3px A er A ez — h3px A ea A e3)
+2) ||RI2h3; {0ake1 Aea A ez — wiler)x Aea Aes + R}
J

+ 22 |1ﬁ|‘?h:{’j{51kel ANea Aes — wf(ek)x ANei Aes+ h?kﬂ}.
J

We see from (6.10) that e A ez A e3 appears in e, (A7), not in ex(AD) or
in ex. Thus, (6.9) and (6.10) imply that ||| is constant. So, according to
Theorem 4.1, 7 is mass-symmetric 1-type which is a contradiction. Since M2
is analytic, those imply KP # 0 on an open dense subset U of M>.

From K? # 0 on U, we may choose ey, es,€3,..., em_1 on U such that
AgyyAey #0,Ae, =+ = A, , = h}, =0, D,,e3 lies in the linear subspace
spanned by e4,es and D.,es lies in the linear subspace spanned by ey, €5, €.
From these we have

(6.11) Wle) =wh = =wlt=pd, = h%, =0,
a=5,...,m—1,
(6.12) KP =—2n% b1, #0, b = —h3, #0

on the dense open subset U.
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We see from (6.7) and (6.8) that e; A ez A e, appears in ex(A%7), not in
ex(AD) or in exp. Thus, (6.8) and (6.9) yield

Z(h?jwf(ej) - h?ng(ej))ek Ne; Neg
(6.13) ’
= 3 wi(ejhhes Aei Nea — D wi(e;)hie; Aei Aea
1,3 ]
fork=1,2, «=5,...,m—1.
In view of (6.11), we find from (6.13) that

(6.14) h%lw? (e2) — h‘wig(el) = h?lwg(@),
(6.15) hi1wg (e1) + hiaws (e2) = h} g (e1)
for o = 5,...,m — 1. Combining these with w§(e1) = 0 gives

3
(6.16) h%1wg(32) = h?lwg(@), hzllzwg(@) = h‘i’lwg(el),
which implies that
(6.17) h‘flwg(el) = h%2w2(62)-

On the other hand, we see from (6.7) and (6.8) that e3 A e4 A e, appears
only in ex(A%9), not in ex(A#%) or in exy. Thus, (6.8) and (6.9) give

(6.18) Z W?(ej)h?k + Z wff(ej)h?k =0
J 3
for k=1,2 and o = 5,...,m — 1. Hence, in view of (6.11), we find
(6.19) w§ (e1)hd; + wi (e1)hty + wi (e2)his = 0,
(6.20) w§ (e2)hi) — wi (ex)hiy +wi(e2)hiy =0
for a = 5,...,m — 1. In particular, we have w$(e;)h}; + w§(e2)hi, = 0. Com-
bining this with (6.11) and (6.17) gives
(6.21) hiws(er) =0, wi(er) =wi(e2) =0.
By substituting the second equation of (6.21) into (6.16) and (6.20), we obtain
(6.22) hi1w8(e2) =0, wi(e2)hi; = wi(er)ht,.

Also we obtain from (6.11), (6.19) and (6.20) that
wi (e1)hy + wi (e2)hly = wi (e1)his — w§ (e2)hiy =0
for a =7,...,m — 1. Combining this with (6.11) gives
(6.23) wi= =l =l = =W =0,

We see from (6.7) and (6.8) that e; A e5 A e appears in ex(A%7), not in
ex(AD) or in ex7 = 0. Thus, we obtain from (6.8), (6.9), (6.11) and (6.21) that

(6.24) w; (e1)ws(e2) = wi(er)ws (e2).

Now, we divide the proof into two cases:
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Case (i): h$; # 0. From (6.21)-(6.23) we obtain w§ = w§ = 0 for a =
6,...,m— 1. Also, from (6.14), (6.15), (6.19) and (6.20), we have

11‘*’4(62) 11“’3 ("32) w{;’(el) =0,
(6.25) h11w4( 1) — huwg( 1) — Wi(@) =0,
11W3(€1) 11“’4(6’1) w4(62) =0,
11“’3(62) 11W4(62) Wi(el) =0.

After solving this linear system we obtain wj = w} = 0. Consequently, we have
(6.26) wy =wy =0, a=5,....m—1

Since the first normal bundle, Im ﬁ, is spanned by e3, e4 on U, (6.26) implies
that the first normal bundle is a parallel subbundle of the normal bundle.
Hence, the reduction theorem of Erbarcher implies that M? lies in a totally
geodesic §* C 8™, So, without loss of generality, we may assume that m = 5.

Now, by comparing the coefficients of e; A ez A ez and of e; A eg A e4, We
obtain from (6.7), (6.8) and (6.9) that

|hl13h3, = aKPhY, —AKPhRY,, ||BI2R3, = 4KPRY, + 4KP RS,
HhH%hn + Hthh 1o = AKPhY,, ||A|[3h1; - ||Al[3hT, = 4K PR,

After solving this system we obtain K = K2 = 0. Thus, the normal curvature
KP is a nonzero constant. Therefore, equations (6.7) and (6.8) reduce to

el = Z(hgkx ANepAe. —hipx Aes Aep),
i
ex(8) = ||BIRD + ||l Y (hhx Aey Aep — hyx Aea Ney)
T

+2KD{ek/\63/\e4—Zh?kx/\ej/\e4+2h?kx/\ej/\eg},
j J

ex(8%9) = {ex(AlAI") + IRIIE +2 3 1RI3E ik o

4,9,
— 2% (|IBl3eh3; + 1Al 2en(hd;))x Aer Aen
+2 3 (11RZht; + 1Rl fen(hi;) )x Aes Aer
7,r

+ (AR + [|R][* + 4K P)?) > (hpx Aer Aep — hlx Aeg Aey)

T
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+4KP|h|2 x Aes Aes +4KP (1 +2]|A)%)

X {ek/\eg/\e4—2h§kx/\ejAe4+2h?kerjAeg}
J J

~ 23 IRIERE {ex Aer Aer +wd(en)x A Ay
Js

(6.27) +Zwﬁ(ek)x/\el Aeg +th,€x/\es /\er}

s
+2 3 NIAIERE {ex s A er —wR(er)x Aer Aey
7T

+ Zwi(ek)x/\ ea N eg + Zh;kx/\ es N\ er}.
S 8

Now, by comparing the coefficients of e; A ez A e4 in (6.27), we obtain from
(6.9) and (6.27) that 4||h||2 = A, + A, — 2, which is constant. Hence, M? has
constant Gauss curvature. Hence, M? is an open piece of Veronese surface
according to a result of Kenmotsu [16]. This contradicts to Theorem 5.1.

Case (ii): h}; = 0. We obtain from (6.14), (6.15), (6.19) and (6.20) that

hi1wi(e2) + hizwi(e1) = hywi(e1) — hizwi(e2) =0,
(6.28) hf1wi(er) + Aty (e2) = hijwi(e2) — hiawj(er) =0,
hjwi(er) — hiwg(ez) = hijwd(es) — hipwi(er) = 0.
Since h3,, hi, # 0, solving this system gives
(6.29) wie1) = 2wi(e), wilex) = 2wiler), wi(ez) = £wiler)-

If w§ = w) = w§ = w§ = 0, then by applying the same argument as Case
(i), we know that M? is a minimal surface of constant Gauss curvature of a
totally geodesic S* C §™1, which leads to the same contradiction as Case (i).
Hence, at least one of w§,w$, w}, w§ is nonzero. Therefore, (6.28) and (6.29)
yield h3; = +h,. So, after replacing e, by —e, if necessary, we find

hi, = hi; # 0, hiy = bl = hpy = wi(e1) = wi(e2) =0,
(6.30) wi(er) = —wi(e2), wilea) =wiler), wilea) =wiler),

IRI® = 4(r3)* = —2KP.

By considering e1 Aeg Ae,, we obtain from (6.7), (6.8), (6.9) and (6.30) that
0= Z KJ-D(h’l'j&k + hgjézk)el Nea Aep
(6.31) il
+ZK,?hfkek Ae; ANez — ZKth,?;kej Aeg Aea
i 7

K
- ZKJD{hfjek Ae;Aeg— hfjek Aei Nes}.
i?j
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Combining this with (6.30) gives K = KP = 0. Thus, K7, h,, i, are
constant. So, it follows from the last equation in (6.30) that the Gauss curvature
of M? is also constant. Thus, we have K > 0 (cf. [15]). From these, we find

(6.32) h(e1,e1) = ces, h(e1,es) = ceq, h{es,es) = —ces,

for a nonzero constant c. By applying (6.32) and the equation of Codazzi, we
find

(6.33) wh = 2w,

By differentiating (6.33) and applying (6.30) and structure equations, we
have

(6.34) S llegl? = 3 gl = 62 —2.= S][AI -2

Hence, after using (6.34) and the constancy of K (or equivalently Hﬂ[() and
KP | we know that (6.7) and (6.8) reduce to

ex = Z(hgkx Nep ANer —hipx ANea Neyp),
D) = [|hl[> D (h5x Aer Aer — hix Aez Aer)
T
- l|ﬁ||2{ek NesAeg—ho X Nep Aey +Zh?kx/\ej A es

_ng(ek X/\€4/\6a+2w4 er) x/\e3/\ea}

ex(A? — 2||h]? Z erwy (e5) — h¢ S ERWS $(ej))xNe; Aeg
6.35
059 - uhwzek«veﬂwg) e e
—Zw3 e;)w x/\e4/\ea

+HhH D e ((Ve,wf) €5 — wile; )i (e5)

J,ox

—Zw4 e;)w (eJ X Aez A eg

- 2|]h]] Zek ws(e;))e; Nes Neq

j7a
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+ 2RI ex(wi(es))e; Aes Aea
KR
+2|[A|f* Z(hgkx NerNer—hipxAes Aey)

T

— 2Rl (6c* — 1+ ][iz”z){ek NesAes— B3 x Aex A e

+Zh4kx/\e]/\eg—2w3 ek)x/\e4/\ea+2w4 ek)x/\eg/\ea}

— 1A }:( (Ve e — e (eg) = Lol )
><{ek/\e4/\ea—thx/\ez/\ea—w3(ek)x/\eg/\ea
i

+wa(ek)x/\eg/\ea + w§(ex)x Neg /\e4+2wﬂ ex)X ey /\65}
8

+ “hH Z ( v31w4 e] wg'(e5) Z“-’Z(ey ales) )
X {ek/\eg/\ea—Zhikx/\ei/\ea—}—w3(ek)x/\e4/\ea
i

+ ng(ek)x/\ egNeq —wi(eg)x NegAeg+ }:wg(ek)x/\ es A Cﬁ}
8 8

—2||RJ)? Z (h3jwg(e;) — hiws (ey)){e;C AeiAeq+ wa(ek)x ANegAeq
Jo £

+ Y hLXAer Aea —wller)x Aes Aes — wi(ex)X A e A e

+ 3 whler)x A A eﬁ} — 2/j? ng(ej){ 3 wiler)es Aea Aea
B8 Jre i ,

+ h?keg, NegNeq + w5 (ex)ej Nes Aeg+ Zwﬁ(ek)ej NesNeg
B
- Z hiej Aei A eo —wiler)ej Aes Aeq — wa(ek)ej Aeq A 65}

i

+2”h”2 Zw4 e]){ Zw ek)ez ANeg N\ey — h]keg Aeg N\ ey
]7
— hppe; Aek Aea +wi(er)e; Aea Aeq — Zw3 (ex)e; Neq Neg
8

— wi‘(ek)ej ANegNesg+ Zwﬁ(ek)ej ANes A 6[3}.
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By considering e; A ez A eq and ez A eg A eq, (6.9) and (6.35) give
2(6¢% — 1+ [|A|]*)er A ez Aeq + Zng(ej)wg(ek)ej Nes ey
ja
+ 2wai"(ej)w§(ek)ej NesNeg= (A, + Ag)ex Neg Aey.
ja
Combining this with (6.30) and (6.32) gives
(6.36) Ap + Ag = 8||R]|2 — 6.
It follows from (6.9) and (6.35) that
(6.37)
0=2)" (ex(w§(e;) +w§(e;)wi(er))e; Aea Aea

i

+Z[ (Ve,wg) €5 + wi(e;)ws(e;) +Zw4 €;)w (ej)]ek/\eg/\ea

+22w4 (ej)w ekez/\egAea—f—Zz:w4 ej)wl(ex)e; Aes Aeg
YJ @ ] a76
and
(6.38)

0= 2Zek wi(e))ej Nea Aeq — QZwZ(ej)wg(ek)ej Neg Aeg

KR

+Z[ Ve,ws§) e 3 (e;)ws (e5) Zw3 e )w ]CkA€4A6a

+2Zw3 e;)w’ (ex ez/\e4/\ea+22w3 ej)w?(ex)e; A e Aeg.
(A Ja,B

Now, by considering e; Aeg A eg,ea Aes Aeg,e1 Aeg Aeg, and ea Aeg Aeg
respectively, we obtain from (6.37) and (6.38) that

(6.39) e2(wi(e2)) = — wi(ea)wd(e2), whlez)(wiler) +wiler))
= w(en)wg(er),

(6.40) e1(wf(e2)) = —wi(ea)wi(er), wilea)(wi(ea) +wilez))
= wj (e )ws(e2).

Similarly, by considering e; A e, A e5 for 2 and r = 3,4, we find
(6.41) ez(wi(ez)) = wi(ez)w(e2) — wg(el)(‘v%(@z) +wi(e2)),
(6.42) e1(wj(e2)) = wi(e2)wf (e1) — wi(er)(wi(er) + wiler)),

(6.43) e2(w;(e1)) = w3 (e2) (Wi (e2) +wilea)),
(6.44) e1(w3(e1)) = wi(e2)(wi(er) +wiler)).
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Also, by differentiating w¢ and applying (6.30), we find
(6.45) e2(w(er) — ex(w(e2)) = wh(en)uwfl(er) + w(ea)ues)
+ 2w3 (e1)wl (e2).
Now, by applying (6.30), (6.39)-(6.44), and a direct computation, we have

D (R (e5) + R (e)) = Z (hjwi (e5) — hiju§ (e5)) = O,
(6.46) z{ (Ve,ws) e —ws(e;)wg (e5) Zw?, ej)wi(es)} =0,
Z{ Vea“’4 eJ wg'(e5) Z"-’4 (e5)wh( ej)}

for i,k = 1,2; o = 5,6. Thus, in views of (6.24), (6.30), (6.37), (6.38) and
(6.46), equation (6.35) reduces to
(6.47)

epl = Z(hgkx/\ ey Ne, — hgkx Neg A 87‘)7

T

ex(AD) = ||h|[? Z(hgkx NeiAer —hjpx Nex Aey)

- Ilﬁllz{(51k61 ANeg Aeg~+ dapea Nes A 64)

+ Z(h —h3dik)x Aej Aes

- ng(ek)x ANegNeg + waf(ek)x/\ es A ea},
[21 o2

ex(A%5) = 2||h|[* Z(hgkx NeyAe, —hixAeg Ney)

T

+ 2Rl (2 + ||ﬁ||2){hzkxA exher— Y RhxAej Aes
J

—exNezANeqg+ ng‘(ek)x/\ es N ey — sz‘(ek)x/\ ez A ea}
[

— 2”;&”2(51]&31 Aez Aeg+ darea Aeg A 64).
Now, by considering the coefficients of x A e; A e3, we obtain from (4.2) and
(6.47) that
Y[AI* =20y + Ag = 2)[[AI* + XpAg = 0.
Combining this with (6.36) yields
(6.48) Ap+Ag = 8”;’“2 =6, MpAg= (9||ﬁ||2 - 10)“;1”2

Case (i): K > 0. In this case, a result of Wallach [22] implies that there exists
an integer k > 2 such that M? is an open part of the k-th standard immersion
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P 1 S (ﬁ) — §2k < §™=1 of the 2-sphere of constant curvature Wi%—T)—
Without loss generality, we may assume M = S (21 )-

R(k+1)
It is known that eigenvalues of the Laplacian A on S( k(k2+1)) are given by
oA+ L
(6.49) M= per =012
On the other hand, the equation of Gauss gives
rn2  2{k-1)(k+2)
(6.50) Iy = D022,

Substituting (6.50) into (6.48) yields

5k(k + 1) — 16 F /112 + k(1 + k) (9k% + 9 — 56)
(6.51) Ao Aq = : v k(k+ i)

By comparing (6.49) and (6.51) we find
5k(k +1) — /112 + k(1 + k) (9% + 9k — 56) = 2i(i + 1) + 16,
5k(k + 1) 4+ /112 + k(1 + k) (92 + 9k — 56) = 2j(j + 1) + 16

for some natural numbers i, j, which is impossible unless ¥ = 2, ¢ = 1 and
j = 3. It follows from k = 2 that the minimal surface is the Veronese surface.
So, according to Theorem 4.1 the spherical Gauss map is mass-symmetric. This
is a contradiction. .

Case (ii): K = 0. In this case, equation of Gauss yields |||/ = 2. Hence,
we obtain from (6.48) that A\, = 2 and A\, = 8. Combining these with (6.30)
yields

(6.52)

1
hi’l = h%2 = 75’ h?z = hlﬁ = h%z = wg(el) = WE(EQ) =90,
(6.53) Wi(er) = —wh(es), wilea) = wiler), wi(es) = whler),

KP =1, W2 =2

Since K = 0, there exists an integer £ > 2 such that M? is an open portion
of a flat minimal torus T? of a totally geodesic S2¢~1 C S™ (see, [14]). Also,
we see from Theorem 4.1 that £ > 3. We many assume that the T2 is E?/A,
where A is the lattice in E? defined by

(6.54) A = {(2ny7u, 2nymv + 2hTw) 1 my,ng € Z}

for real numbers u, v, w with u,v > 0. It is known that the dual lattice of A is
o f(m_mow M2y

(6.55) AT = {(27ru, 2ruv’ 271'1)) Hm,me € Z}’

the spectrum of 72 = E2/A is

(6.56) {(m—mzw)Q—}-(—n’;—z)Q:ml,mz ez},

u uv
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and the eigenspace V() of A with eigenvalue A is

span{ os (2 + )i (24 ) (2)"+ () =1,

(6.57) w
a:m1~m2;.

Put £ = {1,2,...,£} with £ > 3. Since T? is a minimal surface of S*~1, we
have Ax = 2x. We may assume that x : T? — S%#~1 ¢ E* is given by
(6.58) x(s,t) = (Hi sin(@;s + Pit), pi cos(@;s + ﬁit)) o
K]
with p; > 0,5; > 0 and &; € R satisfying &2 + p2 = 2. From (6.58) we get
ox

5 = (o‘zmi cos(@;s + pit), —@;p; sin(dys + ﬁit)>ie£7

ox

(6.59)
= = (ﬁism cos(@;s + pit), —Pipi sin(@is + :51.75))

el
0x/8s and Ox/0t are orthonormal vector fields on 72.
Since x is isometric, (6.59) gives

(6.60) o= par=> up =1, Zufanf
i i i

It follows from the definition of 7, (6.58), (6.59), and properties of A that each
coordinate function of 7 in E(3) is a multiple of one of the following functions:
cos(@;s + pit), sin(@;s + pit) sin(a@;s + p;t) sin(ars + prt),

sin(@;s + pst), sin(@;s + pit)sin(a;s + p;t) cos(ars + prt),

(6.61) e _ ) _ _ _ _
sin(@;s + pst) cos(ay s + P;t) cos(@s + Drt),
cos(@;s + Pit) cos(@;s + P,t) cos(axs + Dit)
for distinct 4,7,k € L. Thus, each coordinate function of % in E(%) is a linear
combination of
(Bi + D; + Dr)t),
(Bs + Ps + P)t),
(6.62) cos((@; + &; — ax)s + (P; + D; — Di)t),
(P +P; — Pr)t),

for distinct 1,7,k € L.
Since we have a spectral resolution: 7 = ¢ + Iy + g with Ay = 24,

ADy =80y, and 0 £ c € ]E(?), the above observation gives the conditions:
(@ + & + &)’ + (B + 5 + Pr)?, (G + @y — ax)* + (B + B — Pr)’
€ {0,2,8}
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for distinct 7, j, k € £. By combining this with &% + p? = 2, we find

(6.63) Vij + Vik + Viks Vi — Vik — Vik € {—3,-2,1}
for distinct 1, j, k € £, where v;; = &;&; + p;p;. Condition (6.63) yields
(6.64) vi; €{-3-2,-2,-1,-%,1}
for distinct 4,7 € £. From condition (6.64) we find
(6.65)
Yig + Vke € { - 67 _%a "57 _%7 “47 _%a =3, _% - 23 _%a _1703 %72}

We divide the proof of Case (ii) into two cases.

Case (ii-a): Two of y;; are equal. Without loss of generality, we may assume
that either (1) Y12 = 713 Or (2) Y12 = Y34 7& Y13-

Case (ii-a-1): v12 = v13. In this case, (6.64) and condition y12 — 13 — Y23 €
{-3,-2,1} from (6.63) give

(666) Y23 = —1 and Y12 =13 € { - 37 _%7_2)_17‘%7 1}

If v13 = 13 € {3, —%, —2}, we obtain from (6.66) that y12+7y13+7v23 < —5
which contradicts to (6.63). So, this is impossible.

If vi2 = M3 = _% holds, then (6.66) yields a5 — 712 — 713 = 0, which
contradicts to (6.63). Thus, this is also impossible. Consequently, we must
have either (1) yi2 =13 = —lor (2) ma=ms =1

First, let us assume that £ > 4.

If y12 = v13 = —1 holds, then condition 712 + y14 + Y24 € {—3, -2, 1} gives
Y14 + Y24 € {—2,-1,2}. Also, we obtain from vi2 — y14 — Y24 € {-3,-2,1}
that y14 + Y24 € {—2,1,2}. By combining these we obtain v14 + 724 € {-2,2}.

Similarly, using v12 = v23 = —1 and 713 = 723 = —1 we obtain 14 + 34 €
{—2,2} and 724 + 734 € {—2,2}, respectively. Thus, we know that yi4 +
Y24, Y14 + Y34 and 94 + 734 belong to {~2,2}. After solving this system under
the two side conditions: (6.63) and (6.64), we obtain either 14 = y24 =34 = 1
Or Y14 = Y24 = Y34 = — L.

If 442 = 713 = —1 holds, we have either

(a) vij =—1,1<i<j<d4;or

(b) 12 =713 =23 = —1 and y14 = yo4 = Y34 = L. i

Next, assume that y12 = 13 = 1 holds. If 414 € {~3,—%, =2}, then condi-
tion 12 — Y14 — Y24 € {3, —2,1} from (6.63) implies 24 > 2. This contradicts
to (6.64).

If v14 = —3, then condition vi2 — y14 — Y24 € {—3,—2,1} from (6.63) and
(6.64) imply v24 € {%, %, %}, which contradicts to (6.64).

If 14 = 1, condition v12 +~14 + 724 € {—3,—2,1} and (6.64) give vo4 = —1.
From 723 —y12 — 713 € {—3, 2,1} and (6.64) we get yo3 = —1. Similarly, from
Y34 — 24 — Yo3 € {—3,—2,1} and (6.64), we get 34 = —1. Therefore, we have
Y12 =713 = Y14 = 1 and 23 = y24 = 34 = ~1.

If Y14 = —1, then Y12 — Y14 — Y24 S {*3,—2,1} and (664) yield Y24 = 1.
Also, (6.64) and v13 —v14 — 34 € {—3, 2,1} from (6.63) give v34 = 1. Hence,
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we obtain 12 = 713 = Y24 = Y34 = 1, %23 = Y14 = —1. Therefore, under
Y12 = 713, one of the following two cases must occurs:
(A): £> 4 and (12,713,714, V23, V24, V34) is one of the following:

(—L —1, _17 _17 _]-7 _l)a (—]-7 _17 15 _17 17 l)a

6.67
( ) (1,1,-1,-1,1,1), (1,1,1,-1,-1,~1);

(B):£=3 and 2 =v13 =1 or y12 =113 = —1L.
Now, we claim that (A) cannot happen. This can be seen as follows:
If (12,713,714, V23, Y24,%34) is given by the first or second case, then we get

Y12 = 713 = Ye3 = —1. In this case, we find & a3 + P1p2 = @163 + P13 =
Go03 + Pap3 = —1. After solving this for &, we get
(6.68)  a = YAEtnp)Utmps) o V=(0Fhp)1+5m)

—(1+ p2ps) VI+paps

But this is impossible, since Py, p2, p3 are > 0 and @; is a real number.
NOW) assume (712 a7137714)72377247734):(17 la _17 _17 17 1) We have

(6.69) Q10 + p1P2 = uaz + p1ps = 1,
G203 + Paps = 0 du + Pp1Ps = —1,
(6.70) 0204 + PaPs = Q304 + P3Py = 1.

After solving system (6.69), we obtain

== v (P1p2 — 1)(1 — p1ps)
Qy,Q2,03,04) = =+ — ,
(61,82, 3, a4) ( VIt haps
—/ (P12 — 1)(1 + p2ps) /(1 — p13)(1 + P2ps)
V1 —D2ps ’ VPP — 1 ’
—+/ 14 paps(1 + p1p4) )

(6.71)

V(1 = prp2)(P1ps — 1)

Substituting this into (6.70) gives (1 + D2)(P3 + 5a) = (1 + P3)(P2 + Pa) = 0.
Thus, one of the following four cases occurs:
(@) P3 = P2 = —Py;
(B) Pa =P = —P3
(v) 3 = P2 = —Pa;
(0) Ps = Pp1 = —Pa;
If (@) occurs (respectively, (3), (v), or (8) occurs), we obtain

01 = T 4/—-(1+5?%) (respectively, +4/—(1+ p),

L VO R Fhp) V- F )L+ ) )

V1+p; v1+ p2ps

which is a contradiction since &; is a real number.
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If (v12,713, 714 V23, ¥24,734) = (1,1,1,—1,~1, —1) holds, then we get
(6.72) Q162 + P1p2 = @13 + PrP3 = Gnd4 + P1ps = 1,
(6.73) Q203 + Paps = G20ty + PaPs = Oi3is + P3ps = —1.

After solving this system, we get

5, — YL PoP) (L + Paps)
) ~(1 + papa)
But this is impossible since @s is a real number. So, (A) cannot happen.
Consequently, under the assumption: Y12 = Y13, we must have £ = 3 and
T2 =713 = 1.

Case (ii-a-2): 12 = 34 # v13. This case occurs only when £ > 4.

In view of (6.64), we divide this into six cases:

Case (ii-a-2.1): v12 = 34 = —3. In this case, v12 + Y13 + Y23 € {—3,-2,1}
implies 13 + 23 € {0,1,4}. Combining this with (6.65) gives 13 + 723 = 0.
In view of (6.64), we obtain 23 = 1 and 13 = —1 from 13 — Y23 — Y12 €
{—3,~2,1}. Thus, we find 723 — 13 — Y12 = 5 which contradicts to (6.63).

Case (ii-a-2.2): v12 = 734 = —3. Condition v12 + 713 + 723 € {—3,-2,1}
gives 113 + 723 € {—1%, 2, 2}. Combining this with (6.65) yields 13 + Y23 = 3.
Thus, we obtain v23 = 1 and y13 = —% from v13 — Y23 — 712 € {~3,—2,1} using
(6.64). From these we find v23 — y13 — 12 = 4 which is impossible.

Case (1i-a-2.3): v12 = 34 = —2. Condition v12 + v13 + V23 € {-3,-2,1}
gives v13 + va3 € {—1,0,3}. Combining this with (6.65) yields 13 + 23 = —1
or 0.

If y13 + 723 = —1 occurs, 13 — Y23 — 12 € {—3, —2,1} gives ya3 € {0, 3,2}
which is impossible due to (6.64).

It Y13 + Y23 = 0 ocecurs, 7y13 — 23 — 712 € {_35 _25 ]-} giVGS Y23 € {%7 2a % P
which is also impossible due to (6.64).

Case (ii-a-2.4): v12 = 734 = —1. In this case, v12 + 713 + Y23 € {-3,-2,1}
yields y13 +ve3 € {~2,—1,2}.

If v13 + v23 = —2, condition v13 — v23 — 712 € {—3,—2,1} implies that
(v23,m3) = (-1,-1), (=3, —-3), or (1,-3). From these we have 723 — Y13 —
112 € {1,2,5}. Combining this with (6.63) yields vi2 = 13 = —1, which
contradicts to the assumption of Case (ii-a-1.2).

If y13+723 = —1 holds, yi3—723—712 € {—2, -3, 3} yields o3 € {-%,1,3}
Comparing this with (6.64) gives (v23,713) = (~—%,—%) or (1,—2). The first
case reduces to Case (ii-a-1) after making the interchanging: 1 < 3. If the
later case holds, we find v23 — y13 — 12 = 4 which contradicts to (6.63).

If 713 + 723 = 2 holds, v13 —v23 ~ 112 € {—3, 2,1} implies that 723 = 1, 2,
or 3. Comparing this with (6.64) gives v23 = 713 = 1. Thus, this case also
reduces to Case (ii-a-1) after making the interchanging: 1 < 3.

Case (ii-a-2.5): via=y34=—3. Condition vi3+y13+723 € {—3,—2,1} gives

3 3

Y13 + Y23 € {—%, —3,5}. Combining this with (6.65) yields vi3 + v23 = —%
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or —3. If 713 + 723 = —35 holds, we obtain (ye3,713) = (=%, -1) (0,-2),
or (3,-3) from vz — 723 — M2 € {-3,-2,1}. From these we know that
723 — Y13 — 712 = 0, 3, or 4, which contradicts to (6.63).

If y13 + Y23 = —% holds, we get from 13 — Y23 — 712 € {-3,—2,1} that
(v23,m3) = (1, —%) (%’—2), or (-1, —%)- Thus, we get y23 — 13 — 112 = 4,3,
or 0, respectively. This contradicts to (6.63), too.

Case (ii-a-2.6): v12 = 734 = 1. In this case, v12 + 713 + Y23 € {-3,-2,1}
gives 13 + Y23 = —4, —3, or 0. Thus we get y12 — 113 —yas = 5, 4 or L.
Comparing this with (6.63) shows that 15 + 723 = 0.

If v13 > 0 holds, we get 13 = 1 according to (6.64). This contradicts to
the assumption: yi2 # y13 of Case (ii-a-1.2). Hence, we have 713 < 0 instead.
Thus, according to v13 = —7a3 and (6.64), we have vo3 = 1. So, we get
Y23 = —7y13 = 1. Consequently, we have 712 = 723 = 1. Hence, this case
reduces to Cuase (ii-a-1) after making the interchanging: 1 < 2.

Case (ii-b): ~;; are distinct for 1 < i < j < £. Since Y12,713, Y14, V23, V24
and 34 are distinct, (6.64) implies £ < 4.

If £ = 4, then without loss of generality, we may put y12 = —3. Then there
exist 4,7,k,£ € {1,2,3,4} such that (v;;,vke) = (—2,—1) according to (6.64).
So, we have y12 + Vi + e = —6 ¢ {—3,—2,1} which contradicts to (6.63).
Consequently, we know that Case (ii-b) occurs only under the condition: £ = 3.

Without loss of generality, we may assume that 19 < y13 < 723.

If 93 < 0, we obtain from (6.64) that y12+y13+723 < —% which contradicts
(6.63). Hence, we must have o3 = 1 and y12+713 € {—4, —3}. Thus, by (6.64),
we know that (v12,713) is (=3, -1), (=3, —2) or (=2, —1). In all cases, we have
Y23 — 713 — Y12 € {4,5}, which contradicts to (6.63). Hence, Case (ii-b) is
impossible.

In summary, we have £ =3 and v12 =v13 =1 or y12 = y13 = —1.

If 419 = 113 = —1 holds, by considering v23 — 13 — 712, We obtain from
(6.63) and (6.64) that o3 = 1. Hence, we get a3 — y12 — 13 = 3 which
is impossible due to (6.63). Thus, we find v12 = 713 = 1. So, by using
Y23 + 713 + Y12 € {—3,—2,1}, we obtain from (6.63) and (6.64) that o3 = —1.
Consequently, we have (y12,7v13,723) = (1,1,—1). Since £ = 3, it follows from
(6.58) that T2 C S5 C E®. Thus, we may assume the immersion of 72 in E° is

x(s,t) = (,ul sin(@1s + Pit), pa cos(@ys + pit),
(6.74) w2 sin{@gs + Pat), o cos(@as + Pat),
u3 sin(@ss + pat), ps cos(azs + 13315)).

We may assume p3 = 0 by applying a suitable rotation on the (s,t)-plane if
necessary. From the discussions above, we know that @i, &, &3, P1, P2 satisfy

a1ds + p1P2 = G103 = —a283 = 1,
(6.75)
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After solving this system we obtain
(676) \/i(&l,fvz,@g,ﬁl,ﬁg) = :t(l,—l,2, \/g, \/g)
Hence, up to rigid motions, the immersion of 72 in $° C E® takes the form:

x(s,t) = | p1 cos 1 (\/gt + 8), p1 sin L (\/gt + ),
70 1(\fﬁ -Mfﬁ V35, 3 sin V2
,ugcosﬁ( 3t—s),u2smﬁ( 3t — 5), g cos V/2s, p3sin 23)

for some positive numbers p;, g, 3. Finally, by applying (6.60), we obtain
U1 = lg = l3 = % Consequently, the flat minimal torus T2 in S° is congruent

to the equilateral minimal torus defined by (6.1). O

7. Some additional results on spherical Gauss map

The next result provides some answers to the following question:

Question: When the spherical Gauss map of a spherical minimal surface is
minimal ¢

Proposition 7.1. If x : (M?,g) — 8™ is a non-totally geodesic minimal
surface, then its spherical Gauss map U : (M?,§) — SV=1 with N = (Tg) s a
minimal surface of SV~ if and only if any one of the following three conditions

holds:
(1) M2 is a minimal surface of a totally geodesic 3-sphere S3 C S™71.

(2) x: (M?2,g9) — S™ 1 has flat normal connection.
(3) 7:(M2,8) — SN~ has parallel mean curvature vector.

Proof. Let x: (M?,g) — S™ ! be a non-totally geodesic minimal surface and
let A be the Laplacian operator of (M2, g). Then the totally geodesic points
are isolated. If o : (M2, §) — SV¥~1 of x is minimal in S¥~!, then condition
(3) holds trivially.

Now, let us choose e, ..., €1 such that hj; =0forr =35,...,m—1. Then
we have (5.10). Since the induced metric § = (1 — K)g via U is conformal to
the original metric g on M? according to (3.8), we obtain from (5.10) that

A~ ~ 2K "
(7.1) Au_—2y+<1_K>x/\eg/\e4.
Thus, the mean curvature vector H of 7 : (M?,§) — SV~ s
- 2K7
(72) H:(l_K>X/\63/\64.

Hence, © : M? — S¥~1 is minimal if and only if condition (2) holds.
Conditions (1) and (2) are equivalent, since minimal surfaces in $”~! with
flat normal connection are minimal surfaces lying in a totally geodesic S® C

§m-l,
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Now, assume that condition (3) holds. Then we have
(7.3) VxH=(VxH,f1)fr+(VxH, f2) fa,

where f1, f2 are orthonormal vector fields of (7(M), §). From (7.2) we have

D

6)(}}:2)(( K

_K)x/\eg/\e4

(7.4) +___{X/\e3/\e4—x/\A XAey

—xANegNA,, X +xADxesNes+xANeg ADxes}
for X € TM?, which shows that f;, f; are linear combinations of
xANe.Ney, XxANegNep, 1=3,....,m—1.
Thus, (7.3) and (7.4) yield K = 0, i.e., the normal connection of x is flat.

Therefore, we obtain condition (1). O

The next result provides a general property of the spherical Gauss map for
spherical minimal surfaces.

Proposition 7.2. If (M?,g) is a minimal surface of S™ 1, then the mean
curvature vector H of v : (M, §) — 5(%)-1 satisfies |H| < 2, with the equality
holding if and only if the immersion is isotropic.

Proof. As we did in the proof of Theorem 4.1, let us choose e3, ..., ,_1 with
h{j =0 for r =5,...,m — 1. Let us also choose ey, e; which diagonalize the

shape operator A.,. Since we have K =1 — %||B||2 from Gauss’ equation, we
find

(1-K)? ( )
(75 = {(hd) +( W)} — a(htih)’
= {(h31)* - ( ) }2 (h‘ﬁ) +2(h 1)2((71‘;’1)2 + (h12)%)-
So, we obtain |H| < 2 by (7.1), with equality holding if and only if |h3,| = |hd,|

and h}; = 0. The later conditions are equivalent to the isotropy of M? in
Sm—l‘ O

Finally, we give the following.

Proposition 7.3. If x : (M3,9) — S* is minimal without totally geodesic
points, then the scalar curvature of (M3, §) equals to 6.

Proof. We can identify 7 as the unit normal vector field e4 of M3 in S%. Let
hij =: hi; and (h¥) the inverse matrix of (hy;). If we put f; = 3 he;, then
we get (des)(f;) = —e;. Thus, fi, f2, f3 form an orthonormal basis on (M3, g).
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Since (dz, f;) = >0, h¥Yw/, the matrix (h¥) is the matrix of the second
fundamental form of © : M3 — 5% with respect to fi, fo, f3. Thus, from the
equation of Gauss we know that the curvature tensor R of (M3, §) satisfies

(7.6) Rl = 6ikbje — 0iedjk + ™R — RERTF,
Hence, the scalar curvature § of (M3, ) is
A .\ 2 .
S =64+ (Zhﬂ) - Z(h”)Q'
J 4.3
If 1, e9, e3 diagonalize (h;;), then we find

S=6+ M =
hi1hoohss
This proves the proposition. O
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