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REAL HYPERSURFACES IN COMPLEX SPACE FORMS
WITH ¢-PARALLEL RICCI TENSOR AND STRUCTURE
JACOBI OPERATOR

U-HaNG K1, Juan D Dios PEREZ, FLORENTINO G. SANTOS,
AND YOUNG JIN SUH

ABSTRACT. We know that there are no real hypersurfaces with parallel
Ricci tensor or parallel structure Jacobi operator in a nonflat complex
space form (See [4], [6], [10] and [11]). In this paper we investigate real
hypersurfaces M in a nonflat complex space form My (c) under the con-
dition that V¢S = 0 and V¢ Re = 0, where S and R respectively denote
the Ricci tensor and the structure Jacobi operator of M in My (c).

0. Introduction

A Kaehler manifold of constant holomorphic sectional curvature c is called
a complex space form, which is denoted by M,(c). It is well known that
complete and simply connected complex space forms are isometric to a complex
projective space P,,C, a complex Euclidean space C™ or a complex hyperbolic
space H, C according as ¢ > 0, ¢ =0 and ¢ < 0.

In this paper we consider a real hypersurface M in a complex space form
M, (c), c0. Then M has an almost contact metric structure (¢, £, 7, g) induced
from the complex structure J and the Kaehler metric of M, (c). The structure
vector field £ is said to be principal if A§ = of is satisfied, where A denotes
the shape operator of M and o = n(A£). A real hypersurface is said to be a
Hopf hypersurface if the structure vector field ¢ of M is principal.

In the study of real hypersurfaces in P,C, Takagi [12] classified all homo-
geneous real hypersurfaces and Cecil and Ryan [2] showed that they can be
regarded as the tubes of constant radius over Kaehler submanifolds when the
structure vector field £ is principal. Such tubes can be divided into six kinds
of type Ay, As, B, C, D and E.
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On the other hand, real hypersurfaces in H,C have been investigated by
Berndt (1], Montiel and Romero [7] and so on. Berndt [1] classified all homo-
geneous real hypersurfaces in H,,C and showed that they are realized as the
tubes of constant radius over certain submanifolds. Also such kinds of tubes
are said to be real hypersurfaces of type Ag, A1, As or type B.

Now, let M be a real hypersurface in M, (c),c # 0. Then we introduce the
following theorems due to Okumura [9] for ¢ > 0 and Montiel and Romero [7]
for ¢ < 0 respectively.

Theorem A. Let M be a real hypersurface of P,C,n > 2. If it satisfies
(0.1) 9((A¢ —¢A)X,Y) =0

for any vector fields X and Y, then M is locally a tube of radius r over one of
the following Kaehler submanifolds:

(A1) a hyperplane P,_1C, where 0 <1 < 7/2,
(Ag) a totally geodesic PoC (1 <k <n—2), where 0 <r < /2.

Theorem B. Let M be a real hypersurface of H,C,n > 2. If it satisfies (0.1),
then M is locally one of the following hypersurfaces :

(Ao) a horosphere in H,C, i.e., a Montiel tube,
(A1) a geodesic hypersphere and a tube over a hyperplane H,_1C,
(A2) a tube over a totally geodesic HyC (1 <k <n—2).

On the other hand, it is well known that there are no real hypersurfaces
with parallel Ricci tensor in M, (c), n > 3, ¢ # 0 (see [4]). Recently, Kim
[6] proved that this is also true when n = 2. So it should be natural to
investigate real hypersurfaces M in M, (c) by using some conditions about
covariant derivative of § which are weaker than VS = 0, where V and S denotes
the Levi-Civita connection and the Ricci tensor of M in M, (c) respectively.
Along this direction we introduce a theorem due to [3] as follows:

Theorem C. Let M be a real hypersurface in a compler space form My(c),
c#0 satisfying V¢S = 0 and S& = o€ for some constant o. Then M is o Hopf
hypersurface.

A Jacobi field along geodesics of a given Riemannian manifold (M, g) is an
important role in the study of differential geometry. It satisfies a well known
differential equation which inspires Jacobi operators. The Jacobi operator is
defined by (Rx (Y'))(p) = (R(Y, X)X)(p), where R denotes the curvature tensor
of M and X,Y denote tangent vector fields on M. Then we see that Rx is
a self-adjoint endomorphism on the tangent space of M and is related to the
differential equation, so called Jacobi equation, which is given by V/(V,Y) +
R(Y,¥"}y = 0 along a geodesic v on M, where v denotes the velocity vector
along v on M.

When we study a real hypersurface M in a complex space form M, (c), c#0,
we will call the Jacobi operator on M with respect to the structure vector £ the
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structure Jacobi operator on M and will denote it by R, where R, is defined
by Re(X) = R(§, X)X for the curvature tensor R and any tangent vector field
X on M. But, recently it is known that there are no real hypersurfaces in
M, (c) with parallel structure Jacobi operator R, that is, VxR = 0 for any
tangent vector field X on M in M,(c), c£0 (see [10] and [11]).

Motivated by Theorem C and such a view point of the parallel structure
Jacobi operator we are able to consider a covariant derivative or a Lie derivative
for the Ricci tensor S and the structure Jacobi operator R, along the direction
of £. This condition V¢S = 0 (resp. V¢Re =0 or L¢Re = 0 in [11]) are weaker
than the notion of VS = 0 (resp. VR; = 0 or LR¢ = 0), respectively.

Now in this paper we prove the following:

Theorem 0.1. Let M be a real hypersurface in a complex space form My(c)
satisfying V¢S = 0 and VeRe = 0. Then M becomes a Hopf hypersurface in
M, (c). Further, M is locally congruent to one of the following hypersurfaces:

(1) In cases P,C

(A1) a tube of radius r over a hyperplane P,_1C, where 0 <r < 7,

(A2) a tube of radius r over a totally geodesic PyC(1 < k < n — 2), where

0<r<3,

(T') a tube of radius § over a certain complex submanifold in P,C,

(2) In cases H,C

(Ao) a horosphere in H,C, i.e., a Montiel tube,

(A1) a geodesic hypersphere and a tube over a hyperplane H,,_1C,
(A2) a tube over a totally geodesic H,C (1 <k <n—2).

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form M, (c) with
parallel almost complex structure J and N be a unit normal vector field on
M. By V we denote the Levi-Civita connection with respect to the Fubini-

Study metric § of M, (c). Then the Gauss and Weingarten formulas are given
respectively by

VyX =VyX +g(AY,X)N, VxN=-AX

for any vector fields X and Y on M, where V and g denote the Riemannian
connection and the Riemannian metric induced from § respectively, and A
denotes the shape operator in the direction of N.

For any vector field X tangent to M, we put

JX = ¢X +n(X)N, JN =—¢.

Then we may see that (¢,£,7,g) is an almost contact metric structure on M,
that is, we have

P°X = - X +n(X)E, g(¢X,9Y)=g(X,Y)—n(X)n(Y),
77(5) = 17 ¢§ = Oa TI(X) = g(Xv é—)
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for any vector fields X and Y on M. From the fact VJ = 0 and by using the
Gauss and Weingarten formulas, we obtain

(L1) (Vx@)Y =n(Y)AX — g(AX,Y),
(1.2) Vx&=pAX.

Since the ambient manifold is of constant holomorphic sectional curvature
¢, we have the following Gauss and Codazzi equations respectively:

R(X,Y)Z =2{g(Y, 2)X = g(X, 2)Y + g(8Y, Z)$X — g(¢X, Z)¢Y
—29(¢X,Y)$Z} + gAY, Z)AX — g(AX, Z)AY,

(1.3)

(L) (VxAY = (Vy X = H{n(X)sY —n(Y)$X - 2(6X,Y)E}

for any vector fields X,Y and Z on M, where R denotes the Riemannian
curvature tensor of M.

Now let us denote by o = n(A¢), 8 = n(A2%E),v = n(A3¢) and h = TrA, and
V f the gradient vector field of the function f defined on M.

Now let us denote by S the Ricci tensor of M in M,,(c). Then we have from
(1.3)

(1.5) SX = 2{(271 +1)X - 3n(X)€} + hAX — A’X,
which together with (1.2) implies that

(VxS)Y = — zc{g(qﬁAX, Y)E +n(Y)pAX ]} + (Xh)AY
+ (I — A)(VxA)Y — (VxA)AY,

where I denotes the identity map on the tangent space T,M, p € M.
We put U = V£, then U is orthogonal to the structure vector field £&. Thus
it is, using (1.2), seen that

(1.7) U = —AE + o,

which shows that g(U,U) = 8—a?. We easily see that ¢ is a principal curvature
vector, that is, A¢ = o if and only if 8 — a® = 0.
If AE — g(AE,€)E # 0, then we can put

(1.8) AL = af + uW,

where W is a unit vector field orthogonal to £&. Then by (1.2) we see that
U = ué¢W and hence g(U,U) = u?. So we have

(1.9) 2=p8-0o%

Further, W is also orthogonal to U.
Using (1.2) and (1.8), it is seen that

(1.10) pg(VxW,§) = g(AU, X),

(1.6)
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(1.11) 9(Vx§&,U) = pg(AW, X).

Now, differentiating (1.7) covariantly along M and making use of (1.1) and
{(1.2), we find

(1.12) 9(¢X, VyU) + n(X)g(AU + Va,Y)
: = g((VyA)X, &) — g(ApAX,Y) + ag(AdX,Y),

which enables us to obtain
(1.13) (VeA) = 2AU + Va

because of (1.4).
By the definition of U, (1.1) and (1.13), it is verified that

(1.14) VU = 30AU + A€ — BE + ¢Va.
From the Gauss equation (1.3) the structure Jacobi operator Ry is given by
(1.15) RX = R(X,6)¢ = T{X —n(X)&} + aAX - n(AX)AE

for any vector field X on M.

We set Q@ = {p € M|u(p) # 0}, and suppose that @ # 0, that is, & is
not a principal curvature vector on M. Hereafter, unless otherwise stated, we
continue our discussions on the open set 2 of M.

2. Real hypersurfaces in M, (c) satisfying V:R; =0
Differentiating (1.15) covariantly, we find
9(VxRe)Y, Z)
=~ 1 D)g(VxE,Y) +n(Y)g(VxE 2)} + (Xa)g(AY, 2)
+ag((VxA)Y, Z) — g(AL, Z){g((Vx A)§,Y) — g(ApAY, X)}
—9(A& Y {g((Vx A)E, Z) — g(ApAZ, X))},
which together with (1.2) and (1.13) implies that

9((VeRQY, Z) = = L{u(¥)n(2) +u(Z)n(Y)} + (Ea)g(AY, Z)

(21) +ag((VeA)Y, Z) — g(A€, Z){39(AU,Y) + Ya}
— g(AE,Y){3g(AU, Z) + Za},

where v is a 1-form defined by u(X) = ¢(U, X) for any vector field X and
U = u¢W defined in (1.8).
Moreover, assume that V¢Re = 0. Then we have from (2.1)

a(VeA)X + (o) AX =ch{u(X)£ + n(X)U} + n(AX){3AU + Va}
+ {3¢(AU, X) + Xa} A¢.

(2.2)
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Putting X = £ in this and making use of (1.13), we find
(2.3) QAU + EU =0,

which shows that « # 0 on Q.
Putting X = aU in (2.2) and using (2.3), we obtain

(24) (VA - (€U = Sap’t + {aUa) - Sen?}Ag.
Because of (2.3), the equation (1.14) turns out to be
aVU = ZcuW + a? A€ — afE + apVo.
Differentiating (2.3) covariantly along €, we find
(X)AU + a(Vx A)U + aA(VxU) + gva =0.
If we replace X = o in this and take account of (2.3) and (2.4), then we obtain
(2.5) ga;fﬁ + {a(Ua) - %c;ﬂ}AE +a®A(VU) + 2aV§U =0,
which together with (1.14) gives
(2.6) adpVa+ £¢Va+ (Ua) AE + p(a® + Zc){AW — p€ — %(/ﬂ - ch)W} =0,

where we have used (1.8).

3. Real hypersurfaces satisfying V,R; =0 and V.5 =0
In this section, we will continue our discussions on a real hypersurface M in
M, (c) satisfying V¢Re = 0 and V¢S = 0. Then replacing X by £ in (1.6) and
using the Codazzi equation (1.4), we obtain
3 c
1cuX)n¥) +u¥In(X)} + 1{g(AY, ¢X) + g(AX, ¢Y)}
c
G = (Wg(AX,Y) + he(Ty A)X,8) - Shg(46X,Y)
— 9(4Y, (Vx A)¢) — g(AX, (Vy A)E).
On the other hand, VR, = 0 implies
o (VeA)X = - a(6a)AX + Zo{u(X) +n(X)U} + {a(Xa)

(3.2) 5 3
— Zcu(X)}AS + (aVa - ZCU)Q(A& X)
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because of (2.2) and (2.3). Combining above two equations, we get
©(30% — ha — $)u(X)E +(X)V) - 2a(¢a)A2X
+a{h(éa) - a(Eh)}AX

(3.3) = g(AE, X {haVa — aAVa + %C(AU —hU) - EaU}

+ [heXa) - ag(AVa, X) + %c{g(AU, X) ~ hu(X)} = Sou(X)] g

+ {%cu(X) —a(Xa)} A% + {ZcU - aVa}g(A%, X).

Since U is orthogonal to &, we see, using (1.8) and (2.3), that g(A42¢,U) = 0.
Thus, replacing X by U in (3.3) and taking account of (2.3), we find

1(8¢° = ha = D¢ — L{(= + h)éa — alh)}U

MYt Sa- B e - g (B et a
T e ve T gy TR T o g ’

which enables us to obtain

(3.5) (g +ha)a — a?(¢h) = 0.

We notice here that a(Ua) # 2¢u® on Q. In fact, if not, then we have
aAf = (ha + § — 302)¢ by virtue of (3.4) and (3.5). From this, by taking
an inner product with ¢, we have 4a? = ho + < on this subset. So we have
A€ = o, a contradiction. Therefore a(Ua) — %c;ﬂ # 0 is satisfied everywhere.
Consequently we have from (3.4) and (3.5) the following:

(3.6) A28 = pAE + (B - pa)é,
where the function p (resp. 3) is defined by up = g(A%2¢, W) (resp. p? = f—a?
in (1.9)).
Combining (1.8) to (3.6), we see that
(3.7) AW = pf+ (p— )W
because of y # 0.
Differentiating (3.7) covariantly, we find

(VxAW + AVxW = (Xp)e+ uVxE+ X(p—a)W + (p— a)Vx W,
which shows that

(3.8) g(Vx AW, W) = —29(AU, X) + Xp — Xa,

(3.9) (VWA = (p—20)AU = U + Vi,

where we have used (1.4), (1.8) and (1.10). From the last two equations, it
follows that

(3.10) Wup=§&p— £a.
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Taking an inner product (2.6) with W and using (3.7), we have

(2 -9y =0.

On the other hand, by applying £ to (2.6) and using (1.8) we have
alUa = apdWa.
Substituting this into the above equation and using (1.9), we have
3
(3.11) (8- pa = D{a(Ua) = (o + e’} = 0.

We are now going to prove a(Ua) = (a? + 2c)u? on Q. For this purpose we
prepare the following facts.

~{alp~a) + $}Wa + uUa + (o + S0){(p o)

0%

Lemma 3.1. Q = () provided that
(3.12) 8~ pa— 2 =0.
Proof. From our assumption we have

(3.13) A% = pAE+ 2€

by virtue of (3.6). Differentiating (3.13) covariantly and using (1.2), we find
9(VxA)AEY) + g(A(VX A)E,Y) + g(A*9AX,Y) — pg(APAX,Y)

= (Xp)g(48,Y) + pg(Vx A)E,Y) + {9(6AX.Y),

which together with (1.4) and (1.13) yields

(3.14

1
(3.15) (VeAJAE = pAU — U + VB,
If we put X =€ in (3.14) and use (1.13) and the last equation, then we get
1
(3.16) 3AU — 2pAU — gU = (€p)A§ — AVa+ pVa — V6.

If we replace X by A¢ in (3.1) and make use of (1.13), (3.13) and (3.15), we
obtain

pA2U + (0% — hp + E)AU—i— §(3a+h— U
(3.17) . : .
= (€h)A% — ZVa + 5(h— p)VA - SAVE.

On the other hand, we have from (1.5) and (3.13)
(3.18) S¢ = 2(211 — 3)€ + (h — p)AE.
Differentiating this covariantly, we find
(VxS)¢ + SVx = g(zn ~3)Vx€+ X(h— p)AL
+ (h = p)(VxA){ + (h — p)AVxE.
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Putting X = £ in the last equation and taking account of V¢S = 0, (1.5) and
(1.13), we obtain
(3.19) AU + (2h — 3p)AU — U = £(p — WAL+ (p — h)Va.

We here note that p — h # 0 on §2. In fact, if not, then by (3.18) we obtain
S€ = g(S€,£)¢, where g(S¢,&) = £(2n — 3). Then by virtue of Theorem C in
[3], we are able to assert that M is a Hopf real hypersurface. So we have Q = 0,
a contradiction. Thus, p — h # 0 is proved everywhere.

Taking an inner product (3.19) with £ or W, we obtain respectively

(3.20) (h = p)a+ afsh —€p) =0,

(h—p)Wa + u(Eh - &p) =0,
which enables us to obtain

(3.21) pléa) = a(Wa).
From this, together with (1.9) and (3.10), we get
(3.22) W5 = 2u(¢p).

Taking an inner product (3.15) with £ and using (1.9), (3.12) and (3.21), we
obtain

(3.23) o?(€p) = (pa + 3)éa

By the way, if we apply (3.17) by W and make use of (3.7) and (3.22), then we
get
c 1
po(Eh) = sWart plh —2p + a)ép - FH(E6) =0,
which together with (3.12), (3.20) and (3.21) implies that

1 1 c
alh —p+ a)ép+(p* — ph— 5pa— 7)éa = 0.

From this and (3.23) we see that (h — p)£a = 0 and hence £a = 0, because
p—h#0 on Q. So we have Wa = 0, £h = 0 and &p = 0 because of (2.4), (3.5),
(3.20) and (3.21). Further, we have Wp = 0 by virtue of (3.10) and (3.12).

By putting X = pW in (3.1) and using (1.4), (1.13), (3.7), (3.9) and (3.12),
we find

pAVp =(2a — p)A%U — (2ha — hp + p? — po + L—Cl)AU
(3.24)
- g(h—p—ka)U—k (h—p+a)uVy — u?Va,

where we have used (1.9).
Now, differentiating (3.6) covariantly and using (1.2), we have

9(VxA)E,Y) + g(A(Vx ALY ) + g(A$AX)Y) — pg(ApAX,Y)
= (Xp)g(AL,Y) + pg((Vx A, Y) + X (8 — pa)n(Y)
+ (8 — pa)g(pAX,Y).
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Then by the equation of Codazzi (1.4), the above equation becomes
U In(X) — u(X)n(¥)} + 5(p - )g(9Y, X) — g(A*$AX,Y)
+ g(A*$AY, X) + 2pg(pAX, AY) — (B — pa){g(¢AY, X) — g(¢AX,Y)}
= g(AY, (Vx A)) — g(AY, (Vy A)¢) + (Y p)g(AE, X) — (Xp)g(AL,Y)
+Y(8 - pa)n(X) — X(B - pa)n(Y).

Here, we replace X by uW to both sides and take account of (1.4), (3.7) and
(3.9), we have

(3a — 2p) AU + (2p° — 2pa + c)AU + Z(a -p)U
= pAVp + (o — p)uVi + p*(Vp — Va) — p(Wp) A& — uW (B — pa)é.
Substituting (3.24) into (3.25) and using (3.12), we obtain

(o — p)AZU + (3p° — 3pa + 2ha — hp + ZC)AU + g(h —2p+ 20)U

(3.25)

(3.26) .
= §(h —2p+2a)VB — (ah + EVa) + y?{Vp— (Wp)W}.

Then from (3.19) and the fact that £h = £p = Wp = 0, the last equation
becomes

(327)  (2hp+ 20)AU = S(6p— 6o~ U + (ha+ 5)Vp — (hp + )V
Combining (3.16) to (3.17), we also obtain

(3.28) 20AVp = a(2h — p)Vp — (p +c)Va — (20® + ¢) AU + c(2p — h — 3)U,

where we have used (3.12) and the fact that £p = &b = 0.
If we take account of (2.4), then (3.27) turns out to be

(3.29) iU = a(ha+ 2)Vp — alhp + ¢ Va,

where we have put

(3.30) fi= —§(2hp + gc) + g(ﬁpa - 6(12 — ha).

Differentiating (3.29) covariantly and taking the skew-symmetric part, we

get
f{g(VeU, X) +9(Vx€, U)} =0

for any vector X, where we have used £h = £p = {a = 0. This, together with
(1.2), (1.11), (1.14) and (3.7) implies that f1{¢(3AU + Va) + ppW} = 0 and
hence f1(Va — pU + 3AU) = 0. Therefore, it follows that fi = 0 on .

In fact, if not, then we have
(3.31) Va = pU — 3AU.
From this, combining with (3.12) and (3.16), and using £p = 0, we have

(3.32) aVp = —pAU + (p* + c)U
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on the subset ().
Using (3.31), the equation (3.19) can be written as

(3.33) AU = hAU + (p* — ph+c)U.

Substituting (3.31) and (3.32) into (3.28) and making use of the last equa-
tion, we obtain

(3.34) h = 3a— 2p.
Using (3.31), (3.32) and (3.34), we have from (3.27)
AU =hU — Vp

on the subset, which together with (3.32) yields
(p— @)AU = (p* — 302 + 2pa + c)U.

Comparing this with (2.4), we obtain (p + 3a)(pa — &® + £) = 0, which
together with (1.9) and (3.12) implies that p + 3 = 0 on this subset. By the
way, we have from (2.4) and (3.33) the following

300 (p - @) + Zala+2p) = ()%

Therefore « is constant and hence p does so, a contradiction. Thus, f; = 0 is
proved everywhere on ).
Accordingly we have

(3.35) (hp+c)Va = (ha+ g)Vp

by virtue of (3.29).
From (2.4) and (3.19) we have

(p— h)a*Va = 2(2 — 2ha + 3pa — 402)U.

In the same way as above, we verify from this that
(3.36) 2he + 4a? — 3pa — Zi =0

and hence Vo = 0 by virtue of (2.4) and Theorem C in the introduction.
So we have Vp = 0 because of (3.35) and (3.36), which together with (3.12)
yields that V3 = 0. Thus, by using (2.4) the equations (3.16) and (3.28) imply
respectively to

pa—a2+gc=0, 2p% + ¢ = 8pa — 4ha — 1202,

From the last three equations, it follows that p* + a? = —2c and hence
p* — 3pa+4a? = 0, a contradiction. Thus, 3 — po — % # 0on Qis proved. [
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4. Proof of a key lemma

In this section we give another important lemma which will be useful in the
proof of our Main Theorem stated in the introduction.

In this section we also assume that a real hypersurface M in M, (c) has ¢-
parallel Ricci tensor and structure Jacobi operator. Now from (3.4) we obtain

2¢ _ - € 342
A S—hA£+4a2(ha+4 3a)¢,
which implies that
3 c c
203 _ da_C¢ Sy
(4.1) a?(B— ha+ 40) 4(ha+ 4)
Further, from (3.6), we get h = p and hence (3.6) becomes
(4.2) A%¢ = hAE + (B — ha)e.
Putting X = £ in (1.5) and using (4.2), we find
¢
(4.3) S¢ = {§(n~1)+ha—ﬁ}§.

Differentiating this covariantly, we obtain
(Vx8)§ +Vx6 = X (ha = B)§ +{5(n — 1) + ha = B}V x¢.

If we replace X by ¢ in this, and take account of (1.5) and VS = 0, then we
have

A’U — hAU — (B — ha+ ZC)U + &(ha — B)E =0.
Since g(A?U, £) = 0 because of (2.3), it follows from the last equation

(44) E(ha—B) =0
and hence
(4.5) A?U = hAU + (B — ha + ZC)U.
Combining (3.5) to (4.4), we obtain
1 c,. .
(4.6) 50(E0) = (ha + J)ée

Differentiating (4.2) covariantly and making use of (1.2), we find
J(VxA)AEY) + g(A(Vx A)E, Y) + g(APHAX,Y) - hg(AGAX,Y)
(4.7) = (XR)9(ALY) + hg(Vx A)E,Y) + X (8 — ha)n(Y)
+ (B — ha)g(pAX,Y),
which together with the equation of Codazzi(1.4), (1.13) and (3.7) implies that

1
(4.8) (Ve A)AE = hAU — EU +35V8,
where we have used that AGA%¢ = upA¢W, hAU = huA¢W and h = p.
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If we replace X by £ in (4.7) and use (1.3), (1.4), (3.11) and the last equation,
then we get

3A%U — 2RAU — (8 — ha + %)U = (ER)AE — AVa + hVa — %vg,

which, together with (2.3) and (4.5) gives
(49) AU +2(8~ ha+ o)l = (Eh)AS ~ AVa + hVa — 1 V6.

Now by applying A to both sides of (4.9), and using (4.2) and (4.5), we have

(h? + 28 ~ 2ha + 2¢) AU + h(B — ha + §c)U

(4.10) . 4
= h(Eh)AE + (8 — ha)(Eh)E — A%Va — 5AVA +hAVa.

On the other hand, by applying k to both sides of (4.9), we have
(4.11)  R?AU 4 2h(8 — ha + ¢)U = h(Eh)Aé — hAVa + h®Va — %hVﬁ.

If we replace Y by A€ in (3.1) and make use of (1.4), (1.13), (4.2) and (4.8),
then we get

anU + SAU = (60)A% — (5 — ha) (AU + Va) — AU + SAU - %AVﬁ.
This together with (4.5) yields
(h? + 28 — 2ha — E)AU +{hB — h%a + %c(h +a)}U
— (eh)A% — %AVﬁ — (8- ha)Va.
Applying (4.9) by A and using the above formula, we have
zc(:}AU —alU) + A*Va — hAVa - (8 — ha)Va = 0.
Then substituting this formula into the right side of (4.10), we have

(h* 4 283 — 2ha + 2¢)AU + h(B — ha + §c)U

4
(4.12) = h(ER)AE + (8 — ha)(ER)E — (B — ha)Var
- Zc(aU —3AU) — %AV,@.

Substracting (4.12) from (4.11) gives the following
1
i(AVﬂ — hVp) — h(AVa ~ hVa) + (8 — ha)Va

= {2ha — 28 + E}AU +{hB - h’a+ Zch — i—ca}U + (8 — ha)(ER)E.
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This implies again
A%V — hAVS
— 2h{(8 - ha)Va + Zc(aU 34U}
— 2(8— ha)AVa + 2{2ha - 26+ {} AU
+2{hB — h%a + gch - %ca}AU +2(8 — ha)(&h) AS.

On the other hand, by (4.9) we see that
2(8 — ha){hVa — AVa)}

= 2(8 — ha){hAU + 2(8 — ha + &)U — (€h) A& + %Vﬂ},
from this, together with the above equation, it follows that
%{AQVB ~ hAVS ~ (8 — ha)VSB} + Zc{(h + @)AU — (B + E)U} = 0.
Then by using (4.5), we have
SUB=—(h + @)g(AU,U) + (8 + )i
From this and (2.4) it follows that
(413) Sa(UB) = {08 + S(h+ 20)}u”

On the other hand, taking several choices of X and Y in (3.1) and (4.7), and
using (1.4), (1.13), (3.7), (4.2), (4.5) and (4.8), we obtain (for detail, see [3]).

(48 — 4ha + h? + E)AU + (60— 5R)U

4
(4.14) = u(Eh)AW — u(Wh)AE — p{W B — h(Wa) — a(Wh)}¢
+ %(204 — W)V + (ha — 28)Va + j2Vh,

where we have used the formula (4.3) and the assumption V¢S = 0. Applying
(4.14) by U and using (3.11), Lemma 3.1 and (4.13), we get

WAUR) = (5 — 2u")g(AV,U) + (ha® + elac = h))yi,
which together with (2.3) gives
(4.15) a(UR) = (ha + 5)u? + c(o® — ah) — (52
Now, we prepare the following:

Lemma 4.1. {a =0, ¢h=0, £6=0Wa =0and WB =0 on Q.
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Proof. Taking an inner product (4.12) with £ and using (1.8) and (4.4), we find

WWB) = (26 — a®)¢h + (ha — 26)¢a,

which connected with (3.5) yields
(4.16) pa(WB) = (268ha — 280”4+ ¢ — ga2)£a.

If we take an inner product (4.9) with £ and make use of (1.8) and (4.4),
then we also obtain

1
266 = a(eo) + u(Wa),
which together with (1.9) implies that

Combining above two equations, it follows that

(4.18) po(en) = (ha— o + )éa,
where we have used (3.5), (4.4) and (4.6).

Because of (3.5), (4.6), (4.16) and (4.18) and the fact a0 on the set {2 by
Lemma 3.1, it suffices to show that £o = 0 on .

In order to do this, we differentiate (4.1) as follows:

2a(f — ha + %c)Va+o¢2Vﬁ (@® + )(hVa+th)

From this, together with (4.1), we see that

CZ

(4.19) VB - a*(a® + = )Vh (ha® ——ha——8—)Va.

Then by using (4.13), (4.15) and Lemma 3.1, we verify that

or, using (1.9) and (4.1)

2
(cha® — 4ca® + Sy §thoz + §03)(5 —a?)
(4.20) 2 . 8
= c(4a* + ca®)(a® — ha — E)
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Now, differentiating (4.20) gives

3 3
2(ha® — 40 + gaQ + Zcha + -8—c2)u(Xu)

+ (3a%h — 16a° + ca + %ch};ﬁ(Xa)

+{op?(a® + Zc) + a3(40® + ¢)}(Xh)

= a{(8a® + ¢)(2a* — 2ha — §> + a(2a — h) (46 + o)} X ).
From this, putting X = ¢ and using (1.9), (3.5), (4.6) and (4.18),we obtain

3
(g + ha){ca®(c+40?) + (B — 042)(1(:2 + ca?)}
¢ 2y/3 3 432 3, 12 2
+2(= + ha — a®)(=c® —4ea® + —c*ho + cho® + zc*a®)
(4.21) 4 8 4 2 .
= ca®(20 — h)(c + 4a?) + ca®(2c + 160%)(a® — ha ~ E)

3
- a(Zc2h + ca — 16a® + 3cha?)

provided that £a # 0.

If we eliminate 3 from (4.1) and (4.20), then together with (4.21) we are able
to assert that « is a root of an algebraic equation with constant coefficients.
Hence, o should be constant, which makes a contradiction. Therefore, £a =0
on 2. This gives the complete proof of our Lemma 4.1 ]

From (2.3) and (4.9) we have
(4.22) aAVa = haVa — %aVﬂ + {gh —2a(8— ha+o)}U,
by virtue of £éh = 0.
Putting X = £ in (3.3) and using (2.3), (4.1) and (4.22), we obtain

3
(4.23) BaVa — %oﬁVﬂ = {(8 — ha)(20® + Zc) +c(a? — %)}U,
where we have used Lemma 4.1. By virtue of Lemma 4.1, equations (4.9),

(4.12) and (4.14) mentioned above turn out respectively to be

(4.24) hAU +2(8 — ha + ¢)U = hVa — AVa — %vg,
(4.25)
1
(h* +28 — 2ha — E)AU +{hB-h*a+ Zc(h +0)}U = —S AVS + (ha — B)Va,
and
(48 — 4ha + h? + E)AU + E(Ga _5hU
(4.26) )

= 5(2a=h)VB+ (ha —26)Va+ p2Vh.
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5. Proof of main theorem

We will continue our discussions for real hypersurfaces M in M,(c) with
the assumption V¢S = 0 and V¢Re = 0 as in section 4. Now let us use the
formulas (4.23)~(4.26). From (4.23) we have

1
6.1) Ba(Xa) — 50*(X6) = Fu(X),

where we have put

f = (8- ha)2a? + 30) +cla® - 5).

Differentiating (5.1) covariantly and taking the skew-symmetric parts ob-
tained, we find

(¥ £)ulX) — (X FYu(Y) + 2fdu(¥, X)
= Y(8a)(Xa) - X(8a)(Ya) + sa{(Xa)(Y ) - (Ya) (X)),
where the exterior derivative du of a 1-form u is given by
du(Y, X) = L {(¥u(X) ~ Xu(¥) ~u(¥, X))}
If we replace Y by ¢ in (5.2) and take account of Lemma 4.1, we get
fdu(€,X) =0.

Now let us denote by £y be the set of points in £ such that du(€,X), #0

at p € Q and suppose that the set Qg is nonempty. Then we have f = 0, that
is,

20%(8 — ha) + %c(ﬁ — ha) + c(a® — %) =0.

This, together with (4.1) implies that
(5.3) 38 = ha + 20°
on Q. Further, we have by (4.23)
(5.4) Savi = §Va.

By using the similar method to (4.26) we have
(5.5) Tha — 1002 + 3h% + zc =0
and
(5.6) %(2(1 ~h)VB+ (ha —28)Va+ (8 — a*)Vh =0,

which together with (5.4) yields
(6.7) hVa = aVh
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on €. Differentiating (5.5) covariantly and using (5.7), we find (7ha — 10a® +
3h?)Va = 0, which shows that Vo = 0 and hence V3 = 0 and Vi = 0 on Qg
by virtue of (5.4) and (5.7). Thus, it follows from (2.3) and (4.24) that

(5.8) g(h — 8a) = 2a(B — hav),
which connected with (4.1) gives
(5.9) 202 + ha + g =0.

From this and (5.3) we see that
(5.10) 68+ c = 0.

However, it is verified, using (4.25) and (5.8), that

48+ h? — 2ha —6a’ — = = 0.

This, together with (2.3) and (4.26) implies that ha + £ = 0. Thus, (4.1)
becomes 3—ha+ %c = 0. So we have 8+c = 0, which together with (5.10) will
produce a contradiction. Hence we have Q = (). Thus, du(&, X) = 0 for any

vector X. That is, g(VU, X) + g(Vx& U) = 0. This, together with (1.11),
(1.14) and (3.7) with h = p, implies that

O(3AU + Va) + phW = 0.
Accordingly, it follows that
Va =hU — 3AU.
Combining to (2.3), we have
aVa = (ha+ ZC)U.

From this, together with Lemma 3.1 and (3.11) we see that

(5.11) h=a

and hence

(5.12) aVa = (o + ZC)U.
Further, (4.1) becomes

(5.13) o?(f - o?) = (3)? - 50"

Now using (5.3), (5.4), (5.11) and (5.12), we have
1
=0’V = afVa
2
(5.14) = %(ha +20%)(a? + gC)U
=d*(a? + ;;c)U,
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where in the first equality we have used (5.4) and (5.12), and in the second
equality used (5.3) and finally in the third equality used (5.11) respectively.
Differentiating (5.13) covariantly and using (5.11) gives

(5.15) %cﬁvg = (202~ - (o’ + ZC)U.
Then by comparing (5.14) and (5.15) we have
(5.16) (=B~ g)( 2 4 %c) = 0.

On the other hand, substituting (5.11) into (5.9) gives o® = —£. From this,
together with (5.10) and (5.16), we have a contradiction. Thus, the set 2 should
be empty. Therefore we see that the subset {2 in M on which A& —g(A£,£)E #0
is an empty set. Namely, in M, (c), ¢ # 0, every real hypersurface satisfying
V¢S =0 and VR is a Hopf hypersurface. So, we have U = 0 and moreover,
the function « should be constant. Thus, (3.2) implies aV¢A = 0, which
together with (1.4) and (1.12) yields

alAd — pA) = 0.

When the constant « identically vanishes, by Cecil and Ryan [2] we as-
sert that M is a tube of radius § over certain Kaehler submanifold in P,C.
But we here note that any Hopf hypersurfaces in H,,C the function o never
vanishing(see [1], [7] and [8]). For the non-vanishing constant «, by virtue of
Theorems A and B due to Okumura [9] for ¢ > 0 and Montiel and Romero [7]
for ¢ < 0 respectively we complete the proof of our Main Theorem.
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