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ON POSITIVE SOLUTIONS FOR A CLASS OF INDEFINITE
WEIGHT SEMILINEAR ELLIPTIC BOUNDARY VALUE
PROBLEMS WITH CRITICAL SOBOLEV EXPONENT

BoNGsoo KO AND SEUNGPIL KANG

ABSTRACT. By variational methods, we prove the existence of positive
solutions of a class of indefinite weight semilinear elliptic boundary value
problems on critical Sobolev exponent.

1. Introduction

We have known several famous results for the existence or the non-existence
of positive solutions about semilinear elliptic boundary value problems in crit-
ical Sobolev exponent case ([5], [2]). As some different studies from that, we
discuss the existence of positive solutions of the following indefinite weight
semilinear elliptic boundary value problems:

—Au = Ag(z)u(l + |ul?) in Q,
(I,\a) (

1—a)g—z+au:00naﬂ,

where A and o are real parameters, Q is an open bounded domain in RY,

N > 3, with the smooth boundary 8{). We shall consider the critical Sobolev

exponent case p = Ni_z and the function g : § — R! is smooth and changes

sign.
We proved the existence of positive solutions of the case 0 < p < w45 ([4])-
Here o € (0,1) o / g(x)dz # 0 and a € (g, 0] for some constant ap < 0. We

used the constrained minimization method of the functional

2 2 o 248
W= 9o ot g s

on the constrained set

{uc WhH3(Q) : )\/leu\p“ =1}

Received February 5, 2004.

2000 Mathematics Subject Classification. 35J60, 35J20.

Key words and phrases. indefinite weight semilinear elliptic problems, critical Sobolev
exponent, positive solutions, variational methods.

©2007 The Korean Mathematical Society

249



250 BONGSOO KO AND SEUNGPIL KANG

to prove the existence if & # 1. The other case can be proved by the similar
method on the Sobolev space Wol 2(Q). In this paper, we assume that if o = 1,
the considering space is Wy'2(Q).

Ifp= 2, the above constralned set may not be weakly closed, and so we
should ﬁnd a different method to get positive solutions.

In Section 2, we show that a minimizing sequence of the functional which is
induced by the weighted problem (I,) : For a € [0, 1),

A o
Ira(u v 2——/ - P+2+*/ u*dS,
’ /' “' T ) R

on the Nehari manifold:
={ue Wh(Q) : u#0, (J3,(u),u) =0},

where

Ghalu = [ Va2 =2 [ g+ lul)+ 2= [ aas.,
o Q 1 —a Jan
converges to a positive function in W»2(Q2) which is a classical positive solution
of the problem (Iy,) if A\; < A < AL, and X is near to either A\ or A\l, where
A, and A} are the principal eigenvalues of the following problem ([1)):

—Au = Ag(z)u in Q,
o,

1—a)g—z+au=00n5‘9.

Furthermore, we estimate the length of the intervals about A in which the
existence is guaranteed. We also have the similar result for o = 1 using the
following functional

A
Ja(u / [Vul? — —/ 52 Q9|U|p+2-

In the end of Section 2, we can show that (I),) has a positive solution for
all A € (A\7,M1), except A # 0 if g(z) < 0 for all z € HQ. However, we note
that if Q is a ball, g =1,N = 3 and a = 1, then (I),) has a positive solution
if and only if %/\1 < A < Ap, where A; is the principal eigenvalue of —A with
the homogeneous Dirichlet boundary condition ([2]). As the application of
the result, we can prove the existence of a positive solution of the following

problem:
N+2

—Au = g(z)u¥-2 in Q,
(l—a)g—z+au:00n89,

if the function g satisfies the above same condition. We also note that, if 2 is
an open ball, g = 1 in @ and & = 1, we have had the nonexistence result of
any positive solution ([5]). The above difference between the existence and the
non-existence may be appeared from the special properties of the function g in
the indefinite weight problems.
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2. The main results

We first recall some facts about how the method of eigencurves can be used
to define principal eigenvalues. We define p(A, o) by

(A, «)=inf {/ (IVul? = Agu?)dz+ I “ / u?dS,:u € W1’2(Q),/ u? = 1} .
Q Q

- Jan

It can be shown in [1} that 4(0,c) > 0 on o € [, 1] where ag < 0 for some
small negative, and the function A — p(, @) is a concave function such that
©(0,X) — —oo as A — +oo. So it follows that A — p()\, a) has exactly two
zeros A, and AT, and those are principal eigenvalues for (L, ). Furthermore,
the eigencurves A — p(A, ) can be used to produce an equivalent norm for
WL2(9Q) if a # 1. In this case o = 1, we use the following function u:

p(X) = inf {/Q [IV]* = Agu?]dz:ue W(}’Q(Q),/

uzzl}.
Q

Lemma 2.1 ([4]). Suppose o € (0,1) or that / gdz # 0 and o € (o, 0] so
Q

that (Lo) has principal eigenvalues A, and \J. For any A € (A7, A]),
o 3

llwlire = {/ [[Vu? — Agu]dz + —— uzdSI}
Q 1—ajsn
defines a norm in WH2(Q) which is equivalent to the usual norm for WH2(Q).
For the simplicity, we use the following function X : R — R

0 ifa=1,
K(a) = 1 @ otherwise.

Lemma 2.2. Let A € (A, A1), A #0 and let
Myo={ueWh3(Q): u#0, (Ji,(u),u) =0},
Then My, is a nonempty subset of WH2(Q2).

Proof. Since g changes sign, we can choose a nonzero function uy € W12(Q)

so that
/ g|uok”+2 > 0.
Q

_ Ja Vuol* = X [, gud + K(a) [, u%dSm.
A fq gluolPt?
Then u = tug € Mya. O

Let

1P
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Definition 2.3. We define the following functions:

K, =inf {/ [[Vu]? = Agu?] + K(a)/ wdS, u € Wl’z(Q),/g|u|p+2 - 1} ,
Q [219) Q

K§a=inf{/ [IVu|2—>gu2]+K(a)/ u?dS, i u € W1’2’(Q),/ g]u]p+2=—1},
Q /93 Q

K&=inf{/ Ol K (e [ ads, e wio), [ g|u|p+2:1}

Q a0 Q

and

Ko‘a:inf{/ |vu12+K(a)/ u?dS, s u € Wl’z(Q),/ glulPt? = _1},
Q o0 Q

Lemma 2.4. K, >0 and K, >0 if o € (0,1].

Proof. Let a # 1. We show that K[)'; > 0. If not, there is a sequence u,, €
Wh2(Q) so that

lim [/ Ivun|2+K(a)/ uidsz] =0 and /g|un|”+2=1.
Q a0 Q

n—o0

By the Sobolev embedding : W2(2) — L¥~2(Q), it is impossible.
The proof of K, > 0 is exactly the same as the above.
By the similar method, we can prove that in the case o = 1. O

Remark 2.5. Let a € [0,1]. We note that K, and K are concave continu-
ous curves on the interval [A;,\}]. Hence, K}" < K¢, for all A € [0,\}] and
K, < Ky, for all A € [A;,0]. Furthermore, by the Sobolev embedding, the
equivalent norm, and the relations between the principal eigenvalues and the

function g: A / g#PTldz > 0 for all p > 1, where X # 0 is a principal eigen-

value with corresponding positive principal eigenfunction ¢ ([4]), the following
properties hold: (i) K = K, =0, (i) K5, > 0if A € (0,A}) and Kf >0
if Xe (0,2}).

Definitions and Remarks. Let A € (A;,A}). We define the following sets:

Hy = {u e Wh?(Q): )\/ glulPt? = 1}.

Let uw € Hy. Then |]u||,\au € Mya. Ifu € My,, then [juf], 7y e H). We
define the functional E\, : Hy — R! by

Era(u /|Vu|2 /gu2+K(a)/ u?dS,.
o0

Then we obtain
B
2(p + 2 2 p+2
Bra) = [222 25, (i)
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and
pt2

_ )
Do) = 5L B (10177

If we let
Qre = Inf Eyo(H)) and Ch, = inf Jra(Maa),
then by the simple calculation it follows that

@ = |22 0™
p

2
This implies that if {u, } is a minimizing sequence of Ey, on Hy, then {{|un||%,
Un} is also a minimizing sequence of Jy, on My, and vice versa.

Remark 2.6. Let a £ 1. We can prove that u = 0 is not a limit point of M), if
A7 <A< AZ. Toshow that, we assume there is a sequence {u,} in My, so that

| tn|lxa — O as n — o0o. From the Sobolev embedding: W12(Q) — L¥2(Q),
the sequence {w,} which is defined by w, = W is a bounded sequence in
L% (€2). We hence have the following result:

_Saltn), un)

_Ja |Vun|% = A Jq 9ul + K(@) [50uzdS:
[unl3q
as n — 0o, which leads to a contradiction.

We can also have the same argument for the case @ = 1 by the similar
method.

+ (HunHAa)m—2 /lewnlp“ —1

Lemma 2.7. Let o € (0,1] or / gdr # 0 if o = 0. There are two positive

Q
numbers 81 and 82 such that for any A € (A5, g + 1) U (AL — 62, A), of {un}
be a minimizing sequence of Jxa on Mx. Then

/ gul
Q

Proof. Let ¢~ and ¢T be the corresponding eigenfunctions to the principal
eigenvalues \; and AJ, respectively. We can assume that

/Qg\tp‘ P2 = -1, /99\90+|p+2 =1

(Lemma 3.1 in [4]). We also note that

[ater <o [ oo >0

lim inf > 0.
n—oo

Let
fﬂ ’V90+|2 - Kg-a + K(a) f@ﬂ )cp+[2dSm K(_)}_a

5y = At — = .
« Joglet? Jaglet)?
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Then for A € (A} -2, A}) and if {u,,} is a minimizing sequence of Jy, on Mjq,
it is bounded in W12(Q), and then u, — u weakly in WH?(Q) and u, — u
strongly in L?(2). We assume that A > 0. By the previous equality about

_2_
p+2

minimums we know that {||u,||,  "*u,} is a minimizing sequence of Ey, on
H,, and so there is a positive number ¢ such that

4
lim A7 |, 7 [/ [Vunf? = A / 9(un)? + K () /39 ”ids’”} <o K
n—oo Q Q

for some g > 0. Since |[unfrxa = 0 as n — o0, if [, g(un)? — 0 as n — oo, we
get

Kd, < a< Kqy,
which leads to a contradiction. Therefore,

lim [ gu? #0.
Q

Let
5 = fQ |v‘p_l2 - KO_a + K(a) fBQ !(,0_|2de AT =— Ko_a .
JogleI? R [

For the value A € (A, + 61) and A < 0, we can get the same results by
the above methods.
This completes the proof. g

We denote by B.(X) the ball in a Hilbert space X centered at 0 and of
radius €. We state the following:

Proposition 2.8 ([3], pp. 6). Let J be a C-functional on a Hilbert space X
and let M be a closed subset of X verifying the following property:

For any u € M with J'(u) # 0, there exists, for a small enough ¢ > 0, a
Fréchet differentiable function s, : B.(X) — R! such that, by setting t,(5) =
Sy (6ﬁj—(,(%ll) for 0 <6 < e, we have

J'(u)
t,(0) =1 and t,(8 (u— 5—) e M.
O 7

If J is bounded below on M, then for any minimizing sequence {v,} in M

for J, there exists another minimizing sequence {un} in M of J such that

J(ur) < J(vp), lm |Jun —vn]] =0
and 1
1/ ll < = (14 |lualll£2,, O)]) + [t (O[T (un), un)l;
where (, ) is the inner product in X.

Proof. Let C = inf J(M). Use Ekeland’s variational principle ([3]) to get a
minimizing sequence {u,} in M with the following properties:
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(0): J(un) < J(0n) < C+
(i): lim [Jun — va| = O,
1
(ii): J(w) > J(up) — gHw — uy|| for all w € M.

Let us assume ||J'(uy,)}] > 0 for n large, since otherwise we are done. Apply
the hypothesis on the set M with u = u,, to find ¢,(8) = s, <5I|j’ = )H) such

that ws = t,(6) ( 5H§,EZ"§H) € M for all small enough 6 > 0.

Use now the mean value theorem to get
1 ,
s = | 2 I (un) = T (as)

= (1 =t () (ws), tn) + 5tn(8)(J' (ws), ||J,Eun§“> o(8),

where 0(6) — 0 as 6 — 0. Dividing by § > 0 and passing to the limit as § — 0
we derlve

1

— (L 18 O)[unll) Z =20 (0T (un), un) + (1 (un)l,
which is our claim. a

Lemma 2.9. Let o € (0,1] or that /gdx # 0 for a = 0. Given X\ €

Q
(AL, M)A # 0, Jaa is bounded below on My, and there erists a minimiz-
ing sequence {un} of Jag on Mxy so that

B[ (un)lae = 0

and
lim J)\a(un) = inf J)\Q(M)\a).

n—od

Proof. Let A € (A\;,\}) and let A # 0. We show that Jy, is bounded below
on M). In fact, the following can be checked easily: if u € M),, then

)\/ glulP™2 >0
Q
and

Tral) = 5o [ alule .

Let u € My,. Define G : R x W12(Q) — R! by G(s,w) = ®ro(s(u — w)),
where @5, : WH2(Q) — R! is a functional defined by

D)o (u /|Vu|2 /gu2—)\/g!u|p+2+K(a)/ u*dS,.
Q 1219
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Then G(1,0) = 0 and

d
aG(l,O)
= 2/ |Vu|2—2)\/guz—)\(p+2)/g|u|”+2+2K(a)/ u?dS,
Q Q Q 80

= —p (/ﬂ [[Vu]> - Agu?] + K(a)/ u2d5’x) # 0.

o0

Hence, we can apply the Implicit Function Theorem at (1,0) and get that for
d > 0 small enough, there exists a differentiable function

8y : Bs(WH2(Q)) — R?
such that $,(0) = 1, s, (w)(u — w) € My,, and

(Pha(u),w)
(Phalu) )

for all w € Bs(W2(Q2)). From the identification of duality to the Hilbert space
W2(Q), we let

<s; (O)’ w> =

1756 (WIxe

for all 0 < p < 4. Then ¢,(0) =1 and

Wy and t,{p) = sy,(pwy)

tu(p)(u - pwu) = su(pwu)(u - pwu) € Mio.

From Proposition 2.8, there is a minimizing sequence {un} of Jyo on My, so
that

1
JAa(un) < J)\a(vn) < inf J)\a(M)\a) + E, lim ||un - vn“)\a =0,
and

[T 3a () 12 < % (1 + [t (O)[unllxa) + It (O)(Tra(un), un)].

Since Jyo(un) = -2(—;‘:1—2)||un||§\a, so the sequence {u,} is bounded in W12(Q).
Let {|un|ira < C for all n. Then

|3 a(tn)|Ira < % (1+1t, (0)|C1).

Since
|t/ (0)' — |<q)i\a(un)7wn>|
ur plluall3s

Y
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where w, = wy,, and limy, . inf||u,|[xa > 0, if we show that [t; (0)| is
uniformly bounded on n, we are done. In fact, we have the following inequality

(@) (1), )]
< 2 /Q Vit - |20 /Q it A(p+2) /Q 9 fun P+

—+—2K(a)/ UnWndSy-
a0

From the well-known Sobolev embedding theorem, ||wy||xa = 1 for all n, and
Hélder inequality, we have two positive constants Co and C'5 so that

|< l)\a(un)awnH < CQHUTLHAOL + CS~

Since {uy,} is a bounded sequence in W12(Q), so is (@}, (un), wn) on n. There-
fore, we can conclude that

[ 2) xe = 0.
Clearly, we note that
7}1_)120 Ira(tn) = 1nf Jyo(Mig).
O
Theorem 2.10. Let o € (0,1] or that / gdx # 0 for a« = 0. For any A €
(A3, A5 +81) U (AL =82, D), A #£0, the pS;oblem (Ina) has a positive solution.
Proof. Let
¢ =inf Jo(Maa)

and let {u,} be a sequence in M), such that
lim Jaa(u,) =c.
n—oQ
By Lemma 2.9, we can assume that
lim [[J36(tn )| xa = 0.
n—o

Then {uy} is bounded and we can find a weak limit point v of the sequence
in WH2(Q). We can also assume that {u,} converges weakly to u and, by
the Rellich-Kondrakov Theorem ([3]), that u, — u strongly in L4(2) for all
g < #%%5. In particular, for any v € WH2(9Q),

(Jra(tn),v) :/ Vg, - Vv — )\/ JURV — )\/ Gy |un [Pv + K(a)/ unvdSz,
Q Q ) o0

which converges as n — oo to

/ (Vu - Vv — Aguv — Aguju|Pv)de + K(a)/ uvdSy = (J3,(u), v).
0 a0
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Hence, (J},(u),v) = 0 for all v € W12(Q) which means that u is a weak

/ gul
Q

solution for (I)q). In particular, (J}(u),u) = 0. Since lim inf > 0 by
n—oo

Lemma 2.7, we have that u # 0. Therefore, u € M),.
Since Jyo is weakly lower semi-continuous, we get

¢ < Ira(u) < lim Jra(un) =c.

It follows that Jyo(u) = ¢ and that [|un|/xa — ||u//ra Which implies that
u,, — u strongly in W2(€2). Since J;, is continuous at u, we get J},(u) = 0.
The positivity of u is clear from the equality Jyq (u) = Jaa(|ul).
This completes the proof. O

Theorem 2.11. Let a € (0,1] or that / gdx £ 0 fora =0. If g(z) < 0 for
Q
all x € 8, for any X € (0,\]), the problem (Ix,) has a positive solution.

Proof. By Theorem 2.10, we have a positive solution uy of the problem:
{ —Au = Ag(z)u + g(x)u|ulP in Q,

(1—a)g—z+au:00naﬂ,

for A € (A7 + 82, 0;) U (AL — 61, 0%).
Let 0 < A < A} and let {u,} be a minimizing sequence of Jyo in Mjq.
If K < K&, on (0,)\}), we can have the same inequality about the limit

lim inf / gui\ > 0 by the same method in Lemma 2.7, and so using the same
n—od Q

method in Theorem 2.10 we have the existence of a positive solution of (I, ).
We note that Ki" < K, for all A € (0, A]).
Suppose that there is Ag so that 0 < Ag < AL and K} , = K, and K, <

K, on (Ao, A}). Let uy be the positive minimizer of the functional Jya on
Mjq for A € (Mg, AY). Let

P = Ao 9“§+2 + (A= o) Jo 9uX + K(@) [oqu°dSs
g Ao fn gu§+2 .

Then tyuy € Mj,q, and

JAoa(tkuk) = ti [J)\a(u')\) + prii-—Z)()\ - )\0) /Qg’ui} .

As the previous calculation in Remark, we note that
inf w2 >0
)\—N\g /g; g A ’

and we also note that
limi/\nf Iralur) < oo

—A0
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/QU§ # 00,
Q

and hence, ty — 1 as A — Ag. Since {¢t u)} is a minimizing sequence of Jy,q
as A — Ao, we get the weak limit uy, of uy so that

implies that

lim inf
)\——>>\0

lim tyuy =uy, in L*(Q).
A—Xo

If uy, # 0, we know that it is the minimizer of Jy,, and is the positive solution
of the above boundary value problem with respect to Ag. Let

__2
un = AT [up [y 7P .

Then
K= [ 1902 =2 [ glon? + K(a) [ hs..
Q 0 o9
K,J\roa:/ |VUA052—>\0/9(UA0)2+K(a)/ v3,dSs,
Q Q a0
and

K -K?
_ / g(0)? < 22" Dhea o / 9o
Q A= Q

Taking the limit on the both sides as A — g, we get

dK;\—a _— 2
200 = = [ g

Hence, K}, is differentiable at A = Ag, and so [, g(vx,)? = 0. Since

K;\Lw =K{, = / |V, |* + K(a)/ vf\odSz,
Q a0
SO vy, is also a positive solution of the problem:
—Au = g(z)ujulf in Q,
(1—a)£+au:0 on 09,
which leads to a contradiction.
Let uy, = 0. The uy — 0 a.e. in @ as A — A¢. By Harnack Inequality
we can argue that uy — 0 uniformly on any compact subset of . Also by
the Maximum Principle {u,} is uniformly bounded on any neighborhood of

Q. Therefore, uy — 0 uniformly bounded in €, and then by the Lebesgue
dominated convergence Theorem

= | -2 p+2 _
1= i url52 [ ghusP =0

since ||ualjxa = 0 @8 A — Ag, which also leads to a contradiction.
This completes the proof. O
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Corollary 2.12. Let « € (0,1] or that / gdzx # 0 for a = 0. If g satisfies the
Q
condition in Theorem 2.11, then the following problem:
—Au = g(z)u|ulﬁ in 2,
0
(1—a)£+au=0 on 041,
has a positive solution.

Proof. With the result of Theorem 2.11 if we let Ay = 0, the proof for the
convergence of a minimizing sequence of the functional:

1 1
Jw)=z2 [ |Vu] - — ptig +2Ka/ u?dS,
=3 [ Vuf = =25 [ Pz +2K(0) [

on the Nehari manifold
{we WH2(Q) : u£0, / Vuf? - / glufP+? +K(a)/ w2dS, = 0}
Q Q a0
can be produced by the one of Theorem 2.11. O

Acknowledgement. This work was supported by grant No. R05-2002-000-
00605-0 from the Basic Research Program of the Korea Science and Engineering
Foundation.

References

[1] G. Afrouzi and K. Brown, On principal eigenvalues for boundary value problems with

indefinite weight and Robin boundary conditions, Proc. Amer. Math. Soc. 127 (1999),

no. 1, 125-130.

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving

critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437477,

N. Ghoussoub, Duality and perturbation methods in critical point theory, With appendices

by David Robinson. Cambridge Tracts in Mathematics, 107. Cambridge University Press,

Cambridge, 1993.

B. Ko and K. Brown, The existence of positive solutions for a class of indefinite weight

semilinear elliptic boundary value problems, Nonlinear Anal. 39 (2000), no. 5, Ser. A:

Theory Methods, 587-597.

[5] R. PohoZaev, Eigenfunctions on the equation Au + Af(u) = 0, Soviet Math. Dokl. 6
(1965), 1408-1411.

[2

EORS)

[4

Bongsoo Ko

DEPARTMENT OF MATHEMATICS EDUCATION
EDUCATIONAL RESEARCH INSTITUTE

CHEJU NATIONAL UNIVERSITY

CHEJU 690-756, KOREA

E-mail address: bsko@cheju.cheju.ac.kr

SEUNGPIL KANG

DEPARTMENT OF MATHEMATICS EDUCATION
EDUCATIONAL RESEARCH INSTITUTE

CHEJU NATIONAL UNIVERSITY

CHEJU 690-756, KOREA



