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ON STABILITY OF THE FUNCTIONAL EQUATIONS
HAVING RELATION WITH A MULTIPLICATIVE
DERIVATION

Eun Hwi Leg, Ick-SooN CHANG, AND YONG-S00 JUNG

ABSTRACT. In this paper we study the Hyers-Ulam-Rassias stability of
the functional equations related to a multiplicative derivation.

1. Introduction

In 1940, the stability problem of functional equations has originally been
stated by S. M. Ulam [26]. As an answer to the problem of Ulam, D. H. Hyers
has proved the stability of the linear functional equation [8] in 1941, which
states that if 6 > 0 and f: X — Y is mapping with X, Y Banach spaces, such
that

(1.1) 1f(z+y) = fle) = fly)l <6

for all z,y € X, then there exists a unique additive mapping 7" : X — Y such
that

[f(z) = T(z) <
for all z,y € X.

In such a case, the additive functional equation f(z +y) = f(z) + f(y) is
said to have the Hyers-Ulam stability property on (X,Y). This terminology is
applied to all kinds of functional equations which have been studied by many
authors (for instance, [9]-[11], [17])-[23]).

In 1978, Th. M. Rassias [17] succeeded in generalizing the Hyers’ result by
weakening the condition for the bound of the left side of the inequality (1.1).
Due to the fact, the additive functional equation f(x +vy) = f(z) + f(y) is
said to have the Hyers-Ulam-Rassias stability property on (X,Y’). Since then,
a number of results concerning the stability of different functional equations
can be found in [3, 4, 5, 7, 9, 11, 14, 17].
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We now consider functional equations which define multiplicative derivations
and multiplicative Jordan derivations in algebras:

(1.2) dzy) = =zd(y)+yd(z),
(1.3) 9(z*) = 2xg(a).

It is immediate to observed that the real-valued function f(z) = zlnz is a
solution of the functional equations (1.2) and (1.3).

During the 34-th International Symposium on Functional Equations, Gy.
Maksa [1] posed the Hyers-Ulam stability problem for the functional equation
(1.2) on the interval (0,1]. The first result concerning the superstability of this
equation for functions between operator algebras was obtained by P. Semrl [24].
On the other hand, Zs. P4les [16] remarked that the functional equation (1.2)
for real-valued functions on [1,00) is stable in the sense of Hyers and Ulam.
In 1997, C. Borelli [2] demonstrated the stability of the equation (1.2). In
particular, J. Tabor gave an answer to the question of Maksa in [25].

Here we introduce the next functional equation due to the functional equa-
tion (1.3):

(1.4) h(rz?® 4+ 2x) = 2rech(z) + 2h(z),

where r is a nonzero real number, and consider the following functional equation
motivated by the functional equation (1.2):

(1.5) h(z +y + rzy) = h(z) + h(y) + rzh(y) + ryh(z),

where r is a nonzero real number.

The purpose of this paper is to solve the functional equation (1.4), (1.5) and
investigate the Hyers-Ulam-Rassias stability of the functional equation (1.4),
(1.5), respectively.

2. Stability of Eq. (1.4) and Eq. (1.5)

It is easy to see that the real-valued function f(z) = (rz+1)In(rz+1), where
r is a nonzero real number, is a solution of the functional equation (1.4) on the
interval. Now we are ready to find out the general solution of the functional
equation (1.4).

Theorem 2.1. Let X be a real (complex) vector space and v > 0. A function
h:(—1,00) — X satisfies the functional equation (1.4) for all x € (-1,00) if

and only if there ezists a solution G : (0,00} — X of the functional equation
(1.3) such that

h(z) = G(rz +1)
Jor allz € (-2, 00).

Proof. Assume that a function h : (—1,00) — X satisfies (1.4) for all z €
(—1,00). Then we can define the mapping G : (0,00) — X by G(z) = h(E1).
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So we get

G(z?)

B(EEE) =a(r (B - 2(5)
R ()

for all z € (0,00). Therefore G is a solution of the functional equation (1.3),
as desired, and h(z) = G(rz + 1) for all € (-1, 00).
The converse is obvious. O

We here present the general solution of the functional equation (1.5).

Theorem 2.2. Let X be a real (complez) vector space and r > 0. A function
h:(~1 00) = X satisfies the functional equation (1.5) for all x € (—1,00) if
and only if there exists a solution D : (0,00) — X of the functional equation
(1.2} such that

(z) = Dl + 1)
for allz € (-1, 00).

Proof. The arguments used in Theorem 2.1 carry over almost verbatim. 0

In particular, the previous two theorems hold for the case r < 0. Throughout
this paper, RT denotes the set of all nonnegative real numbers and X a real
Banach space with the norm | |.

Theorem 2.3. [15, Theorem 2.1] Let f : [¢,00) — X be a given function for
some ¢ > 1 and let ¢ : [c,00) — RT be a function such that

(2.1) |f(2?) — 22f(2)] < p(x)

for all © € [¢,00). If the series .20, 2 "p(z* ") converges, then there exists a
unique solution g : [c,00) — X of equation (1.3) such that

(2.2) 1f(2) — @) <3270 )
=1
Jor all z € [¢,00).

Theorem 2.4. Let f : [0,00) — X be a given function and r > 0. Assume
that ¢ : [0,00) — R™ is a function such that

(2.3) f(ra® + 2z) = 2re f(z) — 2f (2)] < o(@)

i—1
for all x € [0,00). If the series > oo, 2”50(&“12———1) converges, then there
exists a unique solution h : [0,00) — X of equation (1.4) such that

(2.4) | f(z) = h(z)| <Z2" (W)

for all x € [0, 00).



188 EUN HWI LEE, ICK-SOON CHANG, AND YONG-500 JUNG

Proof. Now put z = =21 in (2.3) to obtain

(- () < o(H).

r

Let us define functions e, : [1,00) — X by

et) = F(2), vl =o(=2).

Then, by Theorem 2.3, there exists a unique solution g : {1, 00) — X of equation
(1.3) such that

le(t) —9(0)] < 3o 27T

for all ¢ € [1,00). Since t = rz + 1, we have

o]

=1

Hence we can define a function A : [0,00) — X by h(z) = g(rz + 1), and so

h(rz® +2z) = g((rz+1)%) =2(rz + Dg(rz + 1)
= 2rzg(rz+1) + 2g(rz + 1) = 2rzh(x) + 2h(z).
The proof of the theorem is complete. O

The following two corollaries are immediate consequences of Theorem 2.1.

Corollary 2.5. Let f : [0,00) — R be a given function and r > 0. Assume
that A : [0,00)% — RY is a function such that for any z,y € [0, 00),

(2.5) [f (@ +y+ray) - f(x) — fly) - raf(y) —ryf(z)] < Alz,y).
If the series

i2_iA<(rx + 1)21._1 -1 (rz+ 1)21.-1 - 1)

?

= r r
converges and
Q_HA((’I'.'L’—}- 1)2n -1 (ry+ 1)2n - 1)
r ’ r

converges to zero for all x € [0,00) then there exists a unique solution h :
[0,00) — R of equation (1.5) such that

4

oo 21—1 2i—1 _
(2.6) |£(z) = h(z)| < ZZ_ZA((m + 11 ~1 (rz+1) 1)

r

for all z € [0, 00).
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Proof. For z = y in (2.5), we have
|fra® + 2z) — 2raf(z) — 2f(z)| < Az, z).
Putting ¢(z) = A(z, z) and applying Theorem 2.4, one obtains
(e
hiz)=g(rz +1) = nlLIr;o W
satisfying (2.6). We claim that A satisfies
Wz +y + rzy) = h(z) + h(y) + reh(y) + ryh(e).

Note that

2n 2n m
(2.7) f<(rz+1) (:ﬁy—f-l) ~1):f((rx—f—lr) 1
+(7“y+1r)2n—1 . (rr+1r)2n~1 . (ry+lr)2n—1).

L yby (”’Hr)z —1 and consider

In the inequality (2.5), replace z by (rm+1r)2 =

the equality (2.7) to find that

(2.8)
’f((rvar 1)271(7;% n” - 1) g+ 1)2n_1f<(m~+ 1r)2" - 1>
—(rz + 1)2"—1f<(l?v'+1ril) ~ra(rz+ 1>2n_1f((ry + 1:” -~ 1>
—ry(ry + 1)2”—1f(____(”” * 174)271 - 1)‘
PN YRS

Now if we divide the inequality (2.8) by 2" (rz +1)2"~1(ry+1)2"~1, then, since

1 1
2(rx + 1) ry +1)2" 1

we get

1 (ra + 1)2n (ry+ 1)2n - 1)
2n(rz + 1)2" " 1(ry + 1)2"—1f< r

1 (rz+1)>" ~1 1
"2n(m+1)2"—1f( r )_ 2 (ry + 1)2"-1
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.f((ry-i—l)r—l)_ rT f((ry+1)2n—1>
r 2n(ry +1)2" -1 T
B Ty f<(rx+1)2n—1)‘
2n(rz + 1)1 T

re+ 1) =1 (ry+1)% —1)

T ’ T '
Taking the limit in the last inequality as n — 0o, we have

h(z +y + rzy) — h(z) — h(y) — rzh(y) — ryh(z) = 0.

The proof of the corollary is complete. O

< 2‘"A((

Corollary 2.6. Let f : [0,00) — X be a given function such that for some
r>0,02>0andp, ¢ <0,

(2.9) [z +y+ray) — flx) - fly) —rafly) —ryf(z)] < 0(aP +y7)

for all z,y € [0,00). Then there exists a unique solution h : [0,00) — X of
equation (1.5) such that

(210) |f(z) - hia)| < iwe[((r_ﬂﬂﬁg)p . (o»x_+%2"_‘l_—_g)q]
for all x € [0, 00). B

Proof. Setting A(z,y) = 6(zP+y?) in the previous Corollary 2.5, we can obtain
the desired result. u

Theorem 2.7. [15, Theorem 2.5] Let f : (0,1} — X be a given function and
let p: (0,1] — RY be a function satisfying

|f(&®) = 2zf(z)| < p(z)
for all x € (0,1]. If the series 3 oo 2"<p(x2_i_1) converges, then there exists a
unique solution h : (0,1] — X of the equation (1.3) such that

(2.11) If(z) — h(z)| <Zzl 227

for all x € (0,1].

Theorem 2.8. Let f: (—1/r,0] — X be a given function and let  : (—1/7,0]
— R* be a function satisfying for some r > 0,

(2.12) |f(ra? + 22) — 2rzf(z) — 2f(2)| < ()

a—i—1
for all x € (=1/r,0]. If the series Y o) 2% (%_—1) converges, then
there exists a unique solution h: (—1/r,0] — X of equation (1.4) such that

°° rx—i—l) T
ol <3 7( )

(2.13) |f(z

I/\
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for all x € (—=1/r,0].
Proof. As the proof of Theorem 2.4, if we set t = rz+ 1 in (2.12), then we have

1(5) -2 (S| < (),
Define ¢, : (0,1] — X by
et) = £(72), vy =o(2),

Then, by Theorem 2.7, there exists a unique solution d : (0,1] — X of the
equation (1.3) such that

where

2T 1
I I nygl—2
d(t) = HILIEOZ t f( - )
Since e(t) = f(*=1) and t = rz + 1,

F(2) — dira +1 |<221 ((m+1271—1)

Now we can define h: (—1/r,0] — X by h(z) = d(rz +1). Then

hirz? 4+ 22) = d((re+1)%) =2(rz + D)d(rz + 1)
= 2rzd(rz+ 1)+ 2d(rz + 1) = 2rzh(z) + 2h{z),
which completes the proof. O

Corollary 2.9. Let f : (=1/r,0] — R be a given function and let A : (—1/r, 0]
— RT be a function satisfying for some r > 0,
(2.14) [f(@+y+ray) — f(z) = fly) —rafy) —ryf(2)] < Az, y)
for all z,y € (=1/r,0]. If the series
ZT ( e+ 1”7 ~1 (y+1)7 - 1)
T

?
r

converges and

2——i—1

QHA((TIE+1) -1 (ry—f—l)rii1 —1)

r ’ r
converges to zero, then there ewists a unique solution h : (—1/r,0] — R
of equation (1.5) such that
00 i—1 g—i-1
i (rz + 1) -1 (ry+1) -1
(215)  [f(x) - hia)] <32 a( - , )

r

for all z € (—1/r,0].
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Proof. For y =z in (2.14), we have
|f(ra? + 20) — 2r2f(z) — 2f(2)] < Az, 2).
Putting ¢(z) = A(z,z) and applying Theorem 2.8, one obtains

@) = lim 27 4 12 p(LZE DTy

which satisfies (2.15). We claim that A satisfies
h(z +y + rzy) = h(z) + h(y) + rah(y) + ryh(z).
Observed that

f((r:c + 1)2_11(7;3/ + 1)2—n - 1) _ f((ra: + 122—71 -1

r

N -1 N2 -1 N¥" -1
Lyt 4 ret]) (ry+1) )
T T T

Now replacing x and y by (m“):_ =1 and (ry+1):“ ~L in (2.14), then

‘f<(rx +1)2 Try+ 1Y 21

. ) — (rz+1)2 "1,

R R S (EER

r T
)

—rz(rz + 1)2_n_1f( (ry+1 ) —ry(ry + 1)2_n“1 .

e e

r

Multiplying in the last inequality by 2"(rz + 1)'=2 " (ry + 1)1727"(< 1), we
have

(rez + l)z_n(ry + 1)2_n - 1)

[27(rz + 112" ry 1) :

g—n
_2n(,’,y + 1)1—2_"f((7'y + 1) e 1) _ 2n(7"$ + 1)1—2_" .
T

2 m PR
f<(rm—|—1) _1)—2"rw(ry+1)1_2_nf((ry+11)ﬂ —1)
re + 1)2_n

=]
r
2—n 2—n
< 2nA((r:ic-l-l) -1 (ry+1) —1).
- r ’ T
Taking the limit in the last inequality as n — oo, one obtains

h(z +y + ray) — h(z) — h(y) — rah(y) — ryh(z) = 0.

—2"ry(rz + 1)1_2_nf((
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This completes the proof of the theorem. |
Example 1. For some 8, p <0, let

f@)=(re+1)In(rz+1)+0(rz+1)*", <0, r > 0.
Note that

|f(rz® + 2z) — 2raf(x) — 2f(x)) = 02(ra + 1)P — (rz + 1)2P~ D],

In Theorem 2.4 setting ¢(z) = [2(rz + 1)? — (rz + 1)2P~V], we obtain the
desired mapping h(z) = (rz + 1) In(rz + 1) satisfying (1.4).

Example 2. Consider

f(z)=(rz+ D) In(rz + 1) + (In(rz + 1))?, —% <z <0, r>0.
Then
|f(rz® + 2z) — 2ra f(2) — 2f(2)| = 2(In(rz + 1))? — 2rz(In(rz + 1))2.

Taking ¢(z) = 2(In(rz + 1))2 — 2rz(In(rz 4 1))? in Theorem 2.8, we have the
desired mapping h(z) = (rz + 1) In(rz + 1) satisfying (1.4).
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