ON STABILITY OF THE FUNCTIONAL EQUATIONS HAVING RELATION WITH A MULTIPLICATIVE DERIVATION

EUN HWI LEE, ICK-SOON CHANG, AND YONG-SOO JUNG

ABSTRACT. In this paper we study the Hyers-Ulam-Rassias stability of the functional equations related to a multiplicative derivation.

1. Introduction

In 1940, the stability problem of functional equations has originally been stated by S. M. Ulam [26]. As an answer to the problem of Ulam, D. H. Hyers has proved the stability of the linear functional equation [8] in 1941, which states that if $\delta > 0$ and $f: X \to Y$ is mapping with X, Y Banach spaces, such that

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for all $x,y\in X,$ then there exists a unique additive mapping $T:X\to Y$ such that

$$||f(x) - T(x)|| \le \delta$$

for all $x, y \in X$.

In such a case, the additive functional equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam stability property on (X, Y). This terminology is applied to all kinds of functional equations which have been studied by many authors (for instance, [9]-[11], [17]-[23]).

In 1978, Th. M. Rassias [17] succeeded in generalizing the Hyers' result by weakening the condition for the bound of the left side of the inequality (1.1). Due to the fact, the additive functional equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam-Rassias stability property on (X, Y). Since then, a number of results concerning the stability of different functional equations can be found in [3, 4, 5, 7, 9, 11, 14, 17].

Received September 20, 2006.

 $^{2000\} Mathematics\ Subject\ Classification.\ 39B52,\ 39B72.$

Key words and phrases. Hyers-Ulam-Rassias stability, multiplicative (Jordan) derivation.

We now consider functional equations which define multiplicative derivations and multiplicative Jordan derivations in algebras:

$$(1.2) d(xy) = xd(y) + yd(x),$$

$$q(x^2) = 2xq(x).$$

It is immediate to observed that the real-valued function $f(x) = x \ln x$ is a solution of the functional equations (1.2) and (1.3).

During the 34-th International Symposium on Functional Equations, Gy. Maksa [1] posed the Hyers-Ulam stability problem for the functional equation (1.2) on the interval (0,1]. The first result concerning the superstability of this equation for functions between operator algebras was obtained by P. Šemrl [24]. On the other hand, Zs. Páles [16] remarked that the functional equation (1.2) for real-valued functions on $[1,\infty)$ is stable in the sense of Hyers and Ulam. In 1997, C. Borelli [2] demonstrated the stability of the equation (1.2). In particular, J. Tabor gave an answer to the question of Maksa in [25].

Here we introduce the next functional equation due to the functional equation (1.3):

(1.4)
$$h(rx^2 + 2x) = 2rxh(x) + 2h(x),$$

where r is a nonzero real number, and consider the following functional equation motivated by the functional equation (1.2):

$$(1.5) h(x + y + rxy) = h(x) + h(y) + rxh(y) + ryh(x),$$

where r is a nonzero real number.

The purpose of this paper is to solve the functional equation (1.4), (1.5) and investigate the Hyers-Ulam-Rassias stability of the functional equation (1.4), (1.5), respectively.

2. Stability of Eq. (1.4) and Eq. (1.5)

It is easy to see that the real-valued function $f(x) = (rx+1)\ln(rx+1)$, where r is a nonzero real number, is a solution of the functional equation (1.4) on the interval. Now we are ready to find out the general solution of the functional equation (1.4).

Theorem 2.1. Let X be a real (complex) vector space and r > 0. A function $h: (-\frac{1}{r}, \infty) \to X$ satisfies the functional equation (1.4) for all $x \in (-\frac{1}{r}, \infty)$ if and only if there exists a solution $G: (0, \infty) \to X$ of the functional equation (1.3) such that

$$h(x) = G(rx + 1)$$

for all $x \in (-\frac{1}{r}, \infty)$.

Proof. Assume that a function $h: (-\frac{1}{r}, \infty) \to X$ satisfies (1.4) for all $x \in (-\frac{1}{r}, \infty)$. Then we can define the mapping $G: (0, \infty) \to X$ by $G(x) = h(\frac{x-1}{r})$.

So we get

$$G(x^{2}) = h\left(\frac{x^{2}-1}{r}\right) = h\left(r\left(\frac{x-1}{r}\right)^{2} + 2\left(\frac{x-1}{r}\right)\right)$$
$$= 2r\left(\frac{x-1}{r}\right)h\left(\frac{x-1}{r}\right) + 2h\left(\frac{x-1}{r}\right)$$
$$= 2xG(x)$$

for all $x \in (0, \infty)$. Therefore G is a solution of the functional equation (1.3), as desired, and h(x) = G(rx + 1) for all $x \in (-\frac{1}{r}, \infty)$.

The converse is obvious.

We here present the general solution of the functional equation (1.5).

Theorem 2.2. Let X be a real (complex) vector space and r > 0. A function $h: (-\frac{1}{r}, \infty) \to X$ satisfies the functional equation (1.5) for all $x \in (-\frac{1}{r}, \infty)$ if and only if there exists a solution $D: (0, \infty) \to X$ of the functional equation (1.2) such that

$$h(x) = D(rx + 1)$$

for all $x \in (-\frac{1}{r}, \infty)$.

Proof. The arguments used in Theorem 2.1 carry over almost verbatim. \Box

In particular, the previous two theorems hold for the case r < 0. Throughout this paper, \mathbb{R}^+ denotes the set of all nonnegative real numbers and X a real Banach space with the norm $|\cdot|$.

Theorem 2.3. [15, Theorem 2.1] Let $f:[c,\infty)\to X$ be a given function for some $c\geq 1$ and let $\varphi:[c,\infty)\to\mathbb{R}^+$ be a function such that

$$(2.1) |f(x^2) - 2xf(x)| \le \varphi(x)$$

for all $x \in [c, \infty)$. If the series $\sum_{i=1}^{\infty} 2^{-i} \varphi(x^{2^{i-1}})$ converges, then there exists a unique solution $g: [c, \infty) \to X$ of equation (1.3) such that

$$|f(x) - g(x)| \le \sum_{i=1}^{\infty} 2^{-i} \varphi(x^{2^{i-1}})$$

for all $x \in [c, \infty)$.

Theorem 2.4. Let $f:[0,\infty)\to X$ be a given function and r>0. Assume that $\varphi:[0,\infty)\to\mathbb{R}^+$ is a function such that

(2.3)
$$|f(rx^2 + 2x) - 2rxf(x) - 2f(x)| \le \varphi(x)$$

for all $x \in [0,\infty)$. If the series $\sum_{i=1}^{\infty} 2^{-i} \varphi(\frac{(rx+1)^{2^{i-1}}-1}{r})$ converges, then there exists a unique solution $h:[0,\infty) \to X$ of equation (1.4) such that

$$|f(x) - h(x)| \le \sum_{i=1}^{\infty} 2^{-i} \varphi \left(\frac{(rx+1)^{2^{i-1}} - 1}{r} \right)$$

for all $x \in [0, \infty)$.

Proof. Now put $x = \frac{t-1}{r}$ in (2.3) to obtain

$$\left| f\left(\frac{t^2 - 1}{r}\right) - 2t f\left(\frac{t - 1}{r}\right) \right| \le \varphi\left(\frac{t - 1}{r}\right).$$

Let us define functions $e, \psi : [1, \infty) \to X$ by

$$e(t) = f\left(\frac{t-1}{r}\right), \ \psi(t) = \varphi\left(\frac{t-1}{r}\right).$$

Then, by Theorem 2.3, there exists a unique solution $g:[1,\infty)\to X$ of equation (1.3) such that

$$|e(t) - g(t)| \le \sum_{i=1}^{\infty} 2^{-i} \psi(t^{2^{i-1}})$$

for all $t \in [1, \infty)$. Since t = rx + 1, we have

$$|f(x) - g(rx+1)| \le \sum_{i=1}^{\infty} 2^{-i} \varphi\left(\frac{(rx+1)^{2^{i-1}} - 1}{r}\right).$$

Hence we can define a function $h:[0,\infty)\to X$ by h(x)=g(rx+1), and so

$$h(rx^{2} + 2x) = g((rx+1)^{2}) = 2(rx+1)g(rx+1)$$
$$= 2rxq(rx+1) + 2q(rx+1) = 2rxh(x) + 2h(x).$$

The proof of the theorem is complete.

The following two corollaries are immediate consequences of Theorem 2.1.

Corollary 2.5. Let $f:[0,\infty)\to\mathbb{R}$ be a given function and r>0. Assume that $\Delta:[0,\infty)^2\to\mathbb{R}^+$ is a function such that for any $x,y\in[0,\infty)$,

$$(2.5) |f(x+y+rxy) - f(x) - f(y) - rxf(y) - ryf(x)| \le \Delta(x,y).$$

If the series

$$\sum_{i=1}^{\infty} 2^{-i} \Delta \left(\frac{(rx+1)^{2^{i-1}} - 1}{r}, \frac{(rx+1)^{2^{i-1}} - 1}{r} \right)$$

converges and

$$2^{-n}\Delta\Big(\frac{(rx+1)^{2^n}-1}{r},\frac{(ry+1)^{2^n}-1}{r}\Big)$$

converges to zero for all $x \in [0, \infty)$ then there exists a unique solution $h : [0, \infty) \to \mathbb{R}$ of equation (1.5) such that

$$(2.6) |f(x) - h(x)| \le \sum_{i=1}^{\infty} 2^{-i} \Delta \left(\frac{(rx+1)^{2^{i-1}} - 1}{r}, \frac{(rx+1)^{2^{i-1}} - 1}{r} \right)$$

for all $x \in [0, \infty)$.

Proof. For x = y in (2.5), we have

$$|f(rx^2 + 2x) - 2rxf(x) - 2f(x)| \le \Delta(x, x).$$

Putting $\varphi(x) = \Delta(x, x)$ and applying Theorem 2.4, one obtains

$$h(x) = g(rx+1) = \lim_{n \to \infty} \frac{f(\frac{(rx+1)^{2^n} - 1}{r})}{2^n (rx+1)^{2^n - 1}}$$

satisfying (2.6). We claim that h satisfies

$$h(x + y + rxy) = h(x) + h(y) + rxh(y) + ryh(x).$$

Note that

(2.7)
$$f\left(\frac{(rx+1)^{2^{n}}(ry+1)^{2^{n}}-1}{r}\right) = f\left(\frac{(rx+1)^{2^{n}}-1}{r} + \frac{(ry+1)^{2^{n}}-1}{r} + r \cdot \frac{(rx+1)^{2^{n}}-1}{r} \cdot \frac{(ry+1)^{2^{n}}-1}{r}\right).$$

In the inequality (2.5), replace x by $\frac{(rx+1)^{2^n}-1}{r}$, y by $\frac{(ry+1)^{2^n}-1}{r}$ and consider the equality (2.7) to find that

$$\left| f\left(\frac{(rx+1)^{2^{n}}(ry+1)^{2^{n}}-1}{r}\right) - (ry+1)^{2^{n}-1} f\left(\frac{(rx+1)^{2^{n}}-1}{r}\right) - (rx+1)^{2^{n}-1} f\left(\frac{(ry+1)^{2^{n}}-1}{r}\right) - rx(rx+1)^{2^{n}-1} f\left(\frac{(ry+1)^{2^{n}}-1}{r}\right) - ry(ry+1)^{2^{n}-1} f\left(\frac{(rx+1)^{2^{n}}-1}{r}\right) \right| \\
\leq \Delta \left(\frac{(rx+1)^{2^{n}}-1}{r}, \frac{(ry+1)^{2^{n}}-1}{r}\right).$$

Now if we divide the inequality (2.8) by $2^n(rx+1)^{2^n-1}(ry+1)^{2^n-1}$, then, since

$$\frac{1}{2^n(rx+1)^{2^n-1}(ry+1)^{2^n-1}} \le 1,$$

we get

$$\left| \frac{1}{2^{n}(rx+1)^{2^{n}-1}(ry+1)^{2^{n}-1}} f\left(\frac{(rx+1)^{2^{n}}(ry+1)^{2^{n}}-1}{r}\right) - \frac{1}{2^{n}(rx+1)^{2^{n}-1}} f\left(\frac{(rx+1)^{2^{n}}-1}{r}\right) - \frac{1}{2^{n}(ry+1)^{2^{n}-1}} \right) \right|$$

$$f\left(\frac{(ry+1)^{2^{n}}-1}{r}\right) - \frac{rx}{2^{n}(ry+1)^{2^{n}-1}} f\left(\frac{(ry+1)^{2^{n}}-1}{r}\right)$$

$$- \frac{ry}{2^{n}(rx+1)^{2^{n}-1}} f\left(\frac{(rx+1)^{2^{n}}-1}{r}\right) \Big|$$

$$\leq 2^{-n} \Delta\left(\frac{(rx+1)^{2^{n}}-1}{r}, \frac{(ry+1)^{2^{n}}-1}{r}\right).$$

Taking the limit in the last inequality as $n \to \infty$, we have

$$h(x+y+rxy) - h(x) - h(y) - rxh(y) - ryh(x) = 0.$$

The proof of the corollary is complete.

Corollary 2.6. Let $f:[0,\infty)\to X$ be a given function such that for some $r>0,\ \theta\geq 0$ and $p,\ q\leq 0$,

$$(2.9) |f(x+y+rxy) - f(x) - f(y) - rxf(y) - ryf(x)| \le \theta(x^p + y^q)$$

for all $x, y \in [0, \infty)$. Then there exists a unique solution $h : [0, \infty) \to X$ of equation (1.5) such that

$$(2.10) |f(x) - h(x)| \le \sum_{i=1}^{\infty} 2^{-i} \theta \left[\left(\frac{(rx+1)^{2^{i-1}} - 1}{r} \right)^p + \left(\frac{(rx+1)^{2^{i-1}} - 1}{r} \right)^q \right]$$

for all $x \in [0, \infty)$.

Proof. Setting $\Delta(x,y) = \theta(x^p + y^q)$ in the previous Corollary 2.5, we can obtain the desired result.

Theorem 2.7. [15, Theorem 2.5] Let $f:(0,1] \to X$ be a given function and let $\varphi:(0,1] \to \mathbb{R}^+$ be a function satisfying

$$|f(x^2) - 2xf(x)| \le \varphi(x)$$

for all $x \in (0,1]$. If the series $\sum_{i=0}^{\infty} 2^i \varphi(x^{2^{-i-1}})$ converges, then there exists a unique solution $h:(0,1] \to X$ of the equation (1.3) such that

$$|f(x) - h(x)| \le \sum_{i=0}^{\infty} 2^{i} \varphi(x^{2^{-i-1}})$$

for all $x \in (0,1]$.

Theorem 2.8. Let $f:(-1/r,0] \to X$ be a given function and let $\varphi:(-1/r,0] \to \mathbb{R}^+$ be a function satisfying for some r>0,

$$(2.12) |f(rx^2 + 2x) - 2rxf(x) - 2f(x)| \le \varphi(x)$$

for all $x \in (-1/r, 0]$. If the series $\sum_{i=1}^{\infty} 2^i \varphi\left(\frac{(rx+1)^{2^{-i-1}}-1}{r}\right)$ converges, then there exists a unique solution $h: (-1/r, 0] \to X$ of equation (1.4) such that

$$|f(x) - h(x)| \le \sum_{i=0}^{\infty} 2^{i} \varphi \left(\frac{(rx+1)^{2^{-i-1}} - 1}{r} \right)$$

for all $x \in (-1/r, 0]$.

Proof. As the proof of Theorem 2.4, if we set t = rx + 1 in (2.12), then we have

$$\left|f\Big(\frac{t^2-1}{r}\Big)-2tf\Big(\frac{t-1}{r}\Big)\right)\right|\leq \varphi\Big(\frac{t-1}{r}\Big).$$

Define $e, \psi : (0,1] \to X$ by

$$e(t) = f\left(\frac{t-1}{r}\right), \ \psi(t) = \varphi\left(\frac{t-1}{r}\right).$$

Then, by Theorem 2.7, there exists a unique solution $d:(0,1]\to X$ of the equation (1.3) such that

$$|e(t) - d(t)| \le \sum_{i=0}^{\infty} 2^{i} \varphi \left(\frac{t^{2^{-i-1}} - 1}{r}\right),$$

where

$$d(t) = \lim_{n \to \infty} 2^n t^{1-2^{-n}} f\Big(\frac{t^{2^{-n}}-1}{r}\Big).$$

Since $e(t) = f(\frac{t-1}{r})$ and t = rx + 1,

$$|f(x) - d(rx+1)| \le \sum_{i=0}^{\infty} 2^{i} \varphi\left(\frac{(rx+1)^{2^{-i-1}} - 1}{r}\right).$$

Now we can define $h: (-1/r, 0] \to X$ by h(x) = d(rx + 1). Then

$$h(rx^{2} + 2x) = d((rx+1)^{2}) = 2(rx+1)d(rx+1)$$
$$= 2rxd(rx+1) + 2d(rx+1) = 2rxh(x) + 2h(x),$$

which completes the proof.

Corollary 2.9. Let $f: (-1/r, 0] \to \mathbb{R}$ be a given function and let $\Delta: (-1/r, 0]^2 \to \mathbb{R}^+$ be a function satisfying for some r > 0.

$$(2.14) |f(x+y+rxy)-f(x)-f(y)-rxf(y)-ryf(x)| \le \Delta(x,y)$$

for all $x, y \in (-1/r, 0]$. If the series

$$\sum_{i=1}^{\infty} 2^{i} \Delta \left(\frac{(rx+1)^{2^{-i-1}} - 1}{r}, \frac{(ry+1)^{2^{-i-1}} - 1}{r} \right)$$

converges and

$$2^{n}\Delta\Big(\frac{(rx+1)^{2^{-i-1}}-1}{r},\frac{(ry+1)^{2^{-i-1}}-1}{r}\Big)$$

converges to zero, then there exists a unique solution $h:(-1/r,0]\to\mathbb{R}$ of equation (1.5) such that

$$(2.15) |f(x) - h(x)| \le \sum_{i=1}^{\infty} 2^{i} \Delta\left(\frac{(rx+1)^{2^{-i-1}} - 1}{r}, \frac{(ry+1)^{2^{-i-1}} - 1}{r}\right)$$

for all $x \in (-1/r, 0]$.

Proof. For y = x in (2.14), we have

$$|f(rx^2 + 2x) - 2rxf(x) - 2f(x)| \le \Delta(x, x).$$

Putting $\varphi(x) = \Delta(x, x)$ and applying Theorem 2.8, one obtains

$$h(x) = \lim_{n \to \infty} 2^n (rx+1)^{1-2^{-n}} f\left(\frac{(rx+1)^{2^{-n}} - 1}{r}\right),$$

which satisfies (2.15). We claim that h satisfies

$$h(x + y + rxy) = h(x) + h(y) + rxh(y) + ryh(x).$$

Observed that

$$f\left(\frac{(rx+1)^{2^{-n}}(ry+1)^{2^{-n}}-1}{r}\right) = f\left(\frac{(rx+1)^{2^{-n}}-1}{r} + \frac{(ry+1)^{2^{-n}}-1}{r} + r \cdot \frac{(rx+1)^{2^{-n}}-1}{r} \cdot \frac{(ry+1)^{2^{-n}}-1}{r}\right).$$

Now replacing x and y by $\frac{(rx+1)^{2^{-n}}-1}{r}$ and $\frac{(ry+1)^{2^{-n}}-1}{r}$ in (2.14), then

$$\left| f\left(\frac{(rx+1)^{2^{-n}}(ry+1)^{2^{-n}}-1}{r}\right) - (rx+1)^{2^{-n}-1} \cdot f\left(\frac{(ry+1)^{2^{-n}}-1}{r}\right) - (ry+1)^{2^{-n}-1} f\left(\frac{(rx+1)^{2^{-n}}-1}{r}\right) - rx(rx+1)^{2^{-n}-1} f\left(\frac{(ry+1)^{2^{-n}}-1}{r}\right) - ry(ry+1)^{2^{-n}-1} \cdot f\left(\frac{(rx+1)^{2^{-n}}-1}{r}\right) \right| \le \Delta \left(\frac{(rx+1)^{2^{-n}}-1}{r}, \frac{(ry+1)^{2^{-n}}-1}{r}\right).$$

Multiplying in the last inequality by $2^n(rx+1)^{1-2^{-n}}(ry+1)^{1-2^{-n}} (\leq 1)$, we have

$$\left| 2^{n} (rx+1)^{1-2^{-n}} (ry+1)^{1-2^{-n}} f\left(\frac{(rx+1)^{2^{-n}} (ry+1)^{2^{-n}} - 1}{r}\right) - 2^{n} (ry+1)^{1-2^{-n}} f\left(\frac{(ry+1)^{2^{-n}} - 1}{r}\right) - 2^{n} (rx+1)^{1-2^{-n}} \cdot f\left(\frac{(rx+1)^{2^{-n}} - 1}{r}\right) - 2^{n} rx (ry+1)^{1-2^{-n}} f\left(\frac{(ry+1)^{2^{-n}} - 1}{r}\right) - 2^{n} ry (rx+1)^{1-2^{-n}} f\left(\frac{(rx+1)^{2^{-n}} - 1}{r}\right) \right| \\
\leq 2^{n} \Delta \left(\frac{(rx+1)^{2^{-n}} - 1}{r}, \frac{(ry+1)^{2^{-n}} - 1}{r}\right).$$

Taking the limit in the last inequality as $n \to \infty$, one obtains

$$h(x + y + rxy) - h(x) - h(y) - rxh(y) - ryh(x) = 0.$$

This completes the proof of the theorem.

Example 1. For some θ , p < 0, let

$$f(x) = (rx+1)\ln(rx+1) + \theta(rx+1)^{p-1}, x \le 0, r > 0.$$

Note that

$$|f(rx^{2} + 2x) - 2rxf(x) - 2f(x)| = \theta[2(rx+1)^{p} - (rx+1)^{2(p-1)}].$$

In Theorem 2.4 setting $\varphi(x) = \theta[2(rx+1)^p - (rx+1)^{2(p-1)}]$, we obtain the desired mapping $h(x) = (rx+1)\ln(rx+1)$ satisfying (1.4).

Example 2. Consider

$$f(x) = (rx+1)\ln(rx+1) + (\ln(rx+1))^2, -\frac{1}{r} < x \le 0, r > 0.$$

Then

$$|f(rx^2 + 2x) - 2rxf(x) - 2f(x)| = 2(\ln(rx+1))^2 - 2rx(\ln(rx+1))^2.$$

Taking $\varphi(x) = 2(\ln(rx+1))^2 - 2rx(\ln(rx+1))^2$ in Theorem 2.8, we have the desired mapping $h(x) = (rx+1)\ln(rx+1)$ satisfying (1.4).

Acknowledgement. The authors would like to thank referees for their valuable comments. The second author dedicates this paper to his late father.

References

- R. Badora, Report of Meeting: The Thirty-fourth International Symposium on Functional Equations, June 10 to 19, 1996, Wisla-Jawornik, Poland, Aequationes Math. 53 (1997), no. 1-2, 162-205.
- [2] C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), no. 1-2, 74-86.
- [3] I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283 (2003), no. 2, 491-500.
- [4] I.-S. Chang, E.-H. Lee, and H.-M. Kim, On Hyers-Ulam-Rassias stability of a quadratic functional equation, Math. Inequal. Appl. 6 (2003), no. 1, 87-95.
- [5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
- [7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941). 222-224.
- [9] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional equation in Several Variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998.
- [10] _____, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430.
- [11] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
- [12] K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118.

- [13] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137.
- [14] Y.-S. Jung and K.-H. Park, On the stability of the functional equation f(x + y + xy) = f(x) + f(y) + xf(y) + yf(x), J. Math. Anal. Appl. **274** (2002), no. 2, 659–666.
- [15] H.-M. Kim and I.-S. Chang, Stability of the functional equations related to a multiplicative derivation, J. Appl. &. Computing (series A) 11 (2003), 413-421.
- [16] Zs. Páles, Remark 27, In 'Report on the 34th ISFE, Aequationes Math. 53 (1997), 200-201.
- [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
- [18] _____, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. **251** (2000), no. 1, 264–284.
- [19] ______, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
- [20] ______, Functional equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.
- [21] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
- [22] Th. M. Rassias and J. Tabor, Stability of mapping of Hyers-Ulam Type, Hadronic Press Collection of Original Articles. Hadronic Press, Inc., Palm Harbor, FL, 1994.
- [23] _____, What is left of Hyers-Ulam stability?, J. Natur. Geom. 1 (1992), no. 2, 65-69.
- [24] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118–122.
- [25] J. Tabor, Remark 20, In 'Report on the 34th ISFE, Aequationes Math. 53 (1997), 194-196.
- [26] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964.

EUN HWI LEE
DEPARTMENT OF MATHEMATICS
JEONJU UNIVERSITY
JEONJU 302-729, KOREA
E-mail address: ehl@jj.ac.kr

ICK-SOON CHANG
DEPARTMENT OF MATHEMATICS
MOKWON UNIVERSITY
TAEJON 302-729, KOREA
E-mail address: ischang@mokwon.ac.kr

YONG-SOO JUNG
DEPARTMENT OF MATHEMATICS
CHUNGNAM NATIONAL UNIVERSITY
TAEJON 305-764, KOREA
E-mail address: ysjung@math.cnu.ac.kr