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SOME CHARACTERIZATIONS OF REAL HYPERSURFACES
OF TYPE (A) IN A NONFLAT COMPLEX SPACE FORM

U-HaNG K1 AND HuiLl Liu

ABSTRACT. In this paper, we prove that if the structure Jacobi operator
R¢ is £-parallel and R¢ commutes with the Ricci tensor S, then a real hy-
persurface with non-negative scalar curvature of a nonflat complex space
form My, (c) is a Hopf hypersurface. Further, we characterize such Hopf
hypersurface in My (c).

1. Introduction

A complex n-dimensional Kahler manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by M, (c). As is
well-known, a connected complete and simply connected complex space form is
complex analytically isometric to a complex projective space P, C, a complex
Euclidean space C,, or a complex hyperbolic space H,C according as ¢ > 0,
c=0o0rc<0

In this paper, we consider a real hypersurface M in a complex space form
M, (c), ¢ # 0. Then M has an almost contact metric structure (¢,&,7,9)
induced from the Kahler metric and complex structure J on My(c). The
structure vector field £ is said to be principal if AS = a€ is satisfied, where A
is the shape operator of M and a = n(A¢). In this case, it is known that « is
locally constant [6] and M is called Hopf hypersurface.

Typical examples of Hopf hypersurfaces in P,C are homogeneous ones,
namely those real hypersurfaces are given as orbits under subgroup of the
projective unitary group PU(n + 1). Takagi [13] completely classified such
hypersurfaces as six model spaces which are said to be Ay, Az, B, C, D and
E.

On the other hand, real hypersurfaces in H,,C have been investigated by
Berndt [1], Montiel and Romero [8] and so on. Berndt [1] classified Hopf
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hypersurfaces in a complex hyperbolic space whose all principal curvatures are
constant as four model spaces which are said to be Ag, Ay, A2 and B.

We introduce the following theorem without proof which due to Okumura
[10] for ¢ > 0, Montiel and Romero [8] for ¢ < 0 respectively.

Theorem O-MR. ([10], [8]). Let M be a real hypersurface of My (c), ¢ # 0.
If it satisfies Ap — A = 0, then M is locally congruent to one of the following
hypersurfaces:
(1) In case P,C
(A1) a geodesic hypersphere of radius v, where 0 < r < w/2;
(A2) a tube of radius r over a totally geodesic PxC (1 < k < n—2),
where 0 < r < /2.
(2) In case H,C
(Ap) a horosphere in H,C, i.e., a Montiel tube;
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,,_{C;
(A2) a tube of a totally geodesic HyC (1 <k <n—2).

Let M be a real hypersurface of type (A4;) or (A2) in a P,,C, or type (Ao),
(A1) or (A2) in a H,,C. Then M is said to be type (A) for simplicity.
The curvature tensor field R on a Riemannian manifold (M, g) is defined by

R(X,Y) =[Vx, Vy] - V[va]

for any vector fields X and Y on (M, g). We define the Jacobi operator field
Rx = R(-, X)X with respect to a unit vector field X. Then we see that Rx is
a self-adjoint endomorphism of the tangent space. It is related with (the Jacobi
vector equation) V4(V4Y) + R(Y,4)¥ = 0 along a geodesic v, where 4 denotes
the velocity vector field along +.

When we study a real hypersurface M in a complex space form, we will
call the Jacobi operator on M with respect to the structure vector field £ a
structure Jacobi operator on M and will denote it by R¢, where R is defined
by R¢(X) = R(X,£)¢. However, recently it is known that there are no real
hypersurfaces in My, (c) with parallel Jacobi operator R, (see [11] and [12]).
Some works have recently studied several conditions on the structure Jacobi
operator R, and given some results on the classification of real hypersurfaces of
type (A) in a complex space form ([3], [4], [5], [8] and [10] etc.). One of them,
Cho and Ki, one of the present authors, proved the following:

Theorem O-MR. ([4]). Let M be a connected real hypersurface of My(c)
¢ # 0 whose shape operator A commutes Re, that is, ReA = AR¢. Then M
satisfies Ve Re = 0 if and only if M is locally congruent to one of the following:
(1) In case that M, (c) = P,,C with n(A€) # 0,
(A1) @ geodesic hypersphere of radius v, where 0 < r < /2 and r #
w/4;
(A2) a tube of radius r over a totally geodesic PxC (1 < k < n—2),
where 0 < r < 7/2 and r # 7 /4.
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(2) In case that M,,(c) = H,C,
(Ao) a horosphere;

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,,_1C;
(A2) a tube over a totally geodesic HyC (1 <k <n —2).

In this paper, we study a real hypersurface in a nonflat complex space form
M., (c) which satisfies V¢Re = 0 and at the same time R¢S = SR¢, where S
denotes the Ricci tensor of the hypersurface. We give another characterization
of real hypersurfaces of type (A) in a nonflat complex space form by above two
conditions. The main purpose of the present paper is to establish Theorem 6.1.

All manifolds in the present paper are assumed to be connected and of class
C* and the real hypersurfaces are supposed to be orientable.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form My(c),

and N be a unit normal vector field of M. By V we denote the Levi-Civita
connection with respect to the Fubini-Study metric tensor g of M,,(¢). Then
the Gauss and Weingarten formulas are given respectively by

VxY =VxY +g(AX,Y)N, VxN=—-AX

for any vector fields X and Y, where g denoted the Riemannian metric tensor
of M induced from g, and A is the shape operator of M in M,(c). For any
vector field X tangent to M we put

JX = ¢X +n(X)N, JN = =¢,

where J is the almost complex structure of M, (¢). Then we may see that M
induces an almost contact metric structure (¢, &, n, g), that is

¢*°X =—X +n(X),,  g(¢X,dY) =g(X,Y) —n(X)n(Y),

for any vector fields X and Y on M.

Since J is parallel, we verify from the Gauss and Weingarten formulas the
following

(2.2) (Vx¢)Y = n(Y)AX —g(AX,Y)E.

Since the ambient manifold is of constant holomorphic sectional curvature
¢, we have the following Gauss and Codazzi equations respectively:

R(X,Y)Z
23) = {90V 2)X — (X, 2)Y +g(6Y, 2)6X — (60X, Z)6Y
—29(¢X,Y)¢Z} + g(AY, Z)AX — g(AX, Z) AY,
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24)  (VxAY — (Vy A)X = Z{n(X)6Y —n(¥)eX — 29(6X,Y)¢}

for any vector fields X, Y and Z on M, where R denotes the Riemannian
curvature tensor of M.

Now let us denote by a = n(A€), § = n(A2€), ¥ = n(A%), u* = B — o?,
h = traceA, and Vf the gradient vector field of a function f defined on M.
In the following, we use the same terminology and notation as above unless
otherwise stated. We shall denote the Ricci tensor of type (1,1) by S. Then it
follows from (2.3) that

(2.5) SX = 2{(2n +1)X — 3n(X)E} + hAX — AX,
which implies
(2.6) S¢ = %(n — 1) + RAE — A%

If we put U = V&, then U is orthogonal to the structure vector field .
Using (2.1) we see that

(27) ¢U = ——-Af + Oég,
which shows that g(U,U) = 8 — 2. By definition of U and (2.1) we verify that
(2.8) 9(Vx€,U) = g(4%¢, X) — ag(A, X).

Now, differentiating (2.7) covariantly along M and using (2.1) and (2.2), we
find that

(2.9) n(X)9(AU + Va,Y) + g(¢X, Vy U)
= g((VyA)X,§) — g(A¢AX,Y) + ag(A¢X,Y).
Together with (2.4) we obtain

(2.10) (VeA) =2AU + Vo
From (2.9) we also have
(2.11) VU = 39AU + oA — BE+ ¢Va,

where we have used (2.1) and (2.8).
If Af — n(A€)E # 0, we can put

(2.12) AE = af + uW,

where W is a unit vector field orthogonal to . Then from (2.7) it is clear that
U = u¢W and hence g(U,U) = p?, and W is also orthogonal to U. Using (2.1)
we see that

(2.13) ng(VxW,§) = g(AU, X).

From Gauss equation (2.3) we know that the structure Jacobi operator Ry is
given by

(2.14) ReX = R(X,6)€ = 7{X — n(X)} + aAX —n(AX)AE
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for any vector field X on M.
In what follows we assume that u # 0 on M, that is, £ is not a principal
curvature vector field and we put Q = {p € M|u(p) # 0}. Suppose that € is

not empty. Then {2 is an open subset of M, and from now on we discuss our
arguments on §).

3. &-parallel structure Jacobi operator

Let M be a real hypersurface in a complex space form M,,(c), ¢ # 0 satisfying
VeRe = 0, which means that the structure Jacobi operator is {-parallel.
Differentiating (2.14) covariantly, we find

9((VxRe)Y, Z)
== 2 (n(2)9(Vx&Y) +n(Y)g(VxE, Z) + (Xa)g(AY, 2)
+ ag((VxA)Y, Z) - g(Ag, Z){g((Vx A)E,Y) - g(ASAY, X)}
—9(A§,Y){g((Vx A)§, Z) — g(APAZ, X)}.
Together with (2.1) and (2.10) we have
9((VeRe)Y, Z)
= ——{U( n(Z) +w(Zn(Y)} + (§a)g(AY, 2)

+ag((Vs )Y, Z) — g(A€, Z){3g(AU,Y) + Yo}
—g(A&Y){39(AU, Z) + Za},

where u is a 1-form defined by u(X) = g(U, X) for any vector field X.
From the last equation and V¢R¢ = 0 we have

(3.1) a(VeA)X + (Ea)AX
= E{U(X)é +n(X)U} 4+ n(AX){3AU + Va}
+{3g(AU, X) + X o} A¢.
Putting X = £ in this and using (2.10) we get
(3.2) QAU + ZU =0,

which shows that o # 0 on Q.
Putting X = aU in (3.1) and making use of (3.2) we find

(33)  0XVeAU - S(€0)U = Sop’E + {a(Ua) - SerlHAg.
Because of (3.2), the equation (2.11) turns out to be

(3.4) aVU = Z—c,uW + oa? A€ — af}¢ + agVou
Differentiating (3.2) covariantly along 2, we find

(3.5) (XQ)AU + o(Vx AU + AV xU) + ZVXU =0.
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If we replace X = of in this equation and take account of (3.2) and (3.3), we
can obtain

ga/f{ +{aUa) - %c,uz}Af +2A(VU) + gaV§U = 0.
Together with (3.4) we get
3 1
(3.6) addVa+ §¢Va+ (V)A€ +u(a? + S AW —pé — = (u* - E)W} =0,

where we have used (2.12).
Using (2.4) and (2.7), we verify from (3.5) that

37 f{Yeu(X) - Xau¥)} + fe’u{n(X)w(Y) - n(¥ )w(X)}
+a2{g(AVxU,Y) — g(AVyU, X)} + gadu(X, Y) =0,

where w is a 1-form defined by w(X) = g(W, X), and the exterior derivative
du of 1-form u is given by

du(X,Y) = %{Yu(X) — Xu(Y) — u([X,Y])}.
If we replace X by U in (3.7), then we obtain
(3.8) g(ﬁw — (Ua)U) + o2 AVyU + gavUU =0,

because U and W are mutually orthogonal.
Combining (2.9) to (3.1) and using the Codazzi equation (2.4) and (3.2), we
obtain

Q2pVxU = —o(Xa)t+ gau(X)g — a(ta)AX — Za%x
+9(A€, X)(aVa — Scll) + (a(Xa) - Seu(X))Aé
+£(u(X)£ F(X)U) — a2 APAX + aBpAX.

Applying this by ¢ and using (2.8) and (2.12), we have
(3.9) ?VxU + o*g(AW, X )¢ — ag(A€, X)pVa
= a(Ea)BAX + Sa2(X —n(X)E) + Scug(A, X)W + a(Xa)U
—gcu(X)U +aAX - zaun(X)W — o®n(X)AE — a2pAPAX.

Putting X = U in (3.9) and taking account of (2.7), (2.12) and (3.2), we
obtain

(3.10) PVl = ~ S u(Ea)W + {0(Ua) — 2eu’}U + Spad AW,
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4. Real hypersurfaces satisfying R:S = SR;

Let M be a real hypersurface in M, (c), ¢ # 0 satisfying R¢S = SR, which
means that the Ricci tensor S of type (1,1) and the Jacobi operator R¢ with
respect to the structure vector field £ commute to each other. Then we have

9(A%,Y)g(AE, X) — g(A%¢, X)g(AL,Y)
= (A% Y)g(hAS - 26, X) — g(A%, X)g(hA — 1£.Y)

+2h{g(AE, Y In(X) = (A&, X)n(¥)},
where we have used (2.6) and (2.14), which shows that
(41)  add¢ = (ah— §)A2§ +(y—Bh+ Eh)Ag + %h(ﬁ — ha)t.
Combining above two equations, using (2.12) we see that
p{g(A€, Y )w(X) - g(A%, X)w(Y)) = Bn(Y)g(A€, X) = n(X)g(48,V)}.
Putting Y = A£ in this equation, we find that
ng(A%€, X) = pyw(X) ~ fag(AE, X) + B7n(X).
It follows that
PAAPE = (v — Ba)AE + (8% — ay)€
and consequently
(4.2) A%E = pAE+ (8 — pa)é,

where we have put u%p = v — Ba and p?(3 — pa) = 5% — ay on .
From (2.12) and (4.2), we see that

(4.3) AW = pé + (p— )W
and
(4.4) AW = pAW + (8 — pa)W

because of p # 0.
Now, differentiating (4.3) covariantly, we find

(45) (VAW + AVXW = (Xp)¢ + pVx€ + X(p— o)W + (p— a)Vx W,
which implies that

(4.6) g(Vx AW, W) = =29(AU, X))+ Xp— Xa,
(4.7) VAW = (p—2a)AU — %U + UV,

where we have used (2.4) and (2.13).
Replacing X by £ in (4.5) and making use of (4.7}, we find

(4.8) (p — 20)AU — EU + uVi+ p{AVW — (p— )V W)
= u(EWE+ 12U + p(€p — Ea)W.
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Since we have ¢U = —puW, it is verified that
9(AU, X)€ — ¢V xU = (X)W + uVxW.
Putting X = £ in this equation, and using (2.7) and (2.11), we obtain

(4.9) uVeW =3AU — aU + Va — (Ea)é — ()W,
which shows that
(4.10) Epn=Wa.

Using the last two equations, (4.8) turns out to be
(4.11) 3A%U — 2pAU + AVa + %Vﬁ ~pVa+ (ap— 06— E)U
= 2u(Wa)é + u(€p)W — (p — 2a)(Ea)é.
Differentiating (4.2) covariantly and making use of (2.1), we find
(VxA)AE + A(Vx A)E + A%9AX — pAgAX
= (Xp)AE +p(VxA)§ + X(B — pa)é + (B — pa)pAX,
which together with (2.4) implies that
7 1O)N(X) —uX)n(¥)} + 2 (o — )g(#Y, X) - g(A*$AX,Y)
+9(A2BAY, X) + 209($AX, AY) — (8 — pa){g($AY, X) — g($AX,Y)}
= g(AY,(VxA)f) — 9(AX, (Vy A)E) + (Yp)g(Ag, X) — (Xp)g(4AL,Y)
+Y (B8 — pa)n(X) — X(8 — pa)n(Y).

If we replace X by uW to both sides of the last equation and take account
of (2.4), (2.10), (4.3), (4.4), and (4.7), then we obtain

(412)  (3a—2p)A%U +2(p* + B~ 2pa + E)AU +(p— ) (B - pa — %)U

— BAVu+ (ap— HIVa — 5(p— )V + 1V
~p(Wp)AE — pW (B — pa)t.
From (4.6) and (4.7) we see that
(4.13) Wy =&p— &a.
5. Real hypersurfaces with V¢ R; =0 and R¢S = SR,

We will continue our arguments under the hypotheses V¢ R, = 0 and RS =
SR¢. Then (3.6) turns out to be

1 3
aAgVa + ZoVa + (Ua) At + ~u(a® + Zo) (pa + Z-BW =0
by virtue of (4.3). Taking a inner product this with W and using (4.3), we find

(8 — pa — E){a(Ua) — 12 (e + %c)} =0,
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which implies
3
(6.1) aUa) = (o + Zc)

In fact, if not, then we have 8 = pa + z— on this subset. So (4.2) becomes

AZE = pAf + 25. From this and (2.14) we see that R;A = AR, on the set €.
According to Theorem CK([4]), we verify that Q = 0 because V¢ R; = 0 was

assumed. Accordingly (5.1) is proved.

Because of (4.3) and (5.1), the equation (3.10) can be written as
(5.2) @Yyl = —Zu(EW + afop® + 5 (o~ a))U,
which together with (3.2) yields that

C C C
Q?AVyU = —Zu(fa)AW - Z(CWQ + Z(p —a))U.

Substituting (5.1) and the last two equations into (3.8) and making use of
(4.3), we get

0V = ap(Ea)€ + (po — o + S)(E)W + (o7 + Sc)ul,

which enables us to obtain

(5.3) pa(Wa) = (pa — a® + %)fa.

From above two equations it follows that

(5.4) aVa = a(éa)é + a(Wa)W + (o + %C)U.
Using (3.2), the equation (3.1) can be written as
A(VeAX = —alta)AX + %a{u(X)E + (XU}
+Ha(Xa) - Zcu(X))Af +p(AX)(aVa - Zcm.
Putting X = pW in this and taking account of (3.2) and (4.7), we find
a(%aVﬂ - fBVa) + %(36 — 20 — pa)U = —pa(€a) AW + ua(Wa) A€,
where we have used u? = 3 — o, or using (2.12), (4.3) and (5.3),

(5.5) a?VA - fVa? + 525(35 — 202 — pa)U = (€a){2a(pa — B)E + gAg}.
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If we use (2.12), (4.3) and (5.4), then (3.9) is reduced to
QVxU + apn(X)€ + (A X) {ualW — —(Wa)U)
= (E)9AX + a(X —n(X)E) + {(Wa)w(X) + au(X)}U
+a?AX — a*n(X)¢ — Zun(X)W — apApAX,
which implies that
(5:6)  adu(X,Y) = u(pa—a® = 2)n(X)u(Y) - (¥ )w(X))
oo S(Wa) Hn(X)u(Y) = 0¥ Ju(X)
+2(Wa)(w(X)u(Y) — w(¥ u(X))

+(€a){9(pAX,Y) — g(¢AY, X)}
—a{g(pAPAX,)Y) — g(pAdAY, X)}.

Putting X = u¢ in (5.6) and using (2.7), (3.2) and (4.3), we find

(5.7) pdu(€,Y) = (Wayu(Y) + 4 (p — e)uw(Y).
Since we have p? = 3 — o?, it is, using (4.10) and (5.3), seen that
(5.8) () = (200 + 2)éa

On the other hand, we obtain from (3.1)
o?(¢h) = a(2a — h)éa + 2pa(Wa)
because of (2.12) and (3.2), which together with (5.3) gives

(5.9) o?(¢h) = {20 — h) + 5 e

By the way, combining (4.1) to (4.2), we verify that (h—p)(8—pa—%) =0
on Q. Hence h — p = 0 by virtue of 8 — pa — £ # 0 on Q. Accordingly (5.9)
reformed as

(5.10) 0?(£p) = (por+ 5)éau

Using (5.9) and (5.10), we see that
c
(5.11) §(po — o) = &u* = {2(p — a) + =}
Now, we put ¢ = 8 — pa. Then we obtain
(5.12) € =0

by virtue of (5.10) and (5.11).
Owing to (3.2) and (5.4), we verify from (4.9) that

(5.13) VW = 0.
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If we take a inner product (5.5) with U and use (5.1), then we get
1 c
(5.14) 504(U5) = {Ba+ 1(204 + )bt
This, together with (5.1) implies that
¢ 2

(5.15) op(Up) = {ap® + 7(p— a)}p”.

Applying (4.12) by 02U and making use of (3.2), (5.1) and (5.14), we find

2
c c
o*(Up) = o*(2Bp — p*e = Bo) + 7a(28 — p* - a®) = Lep,
which connected to (5.1) and (5.14) yields
c
(5-16) a(Uo) = {28 —pa’+ (4o —p)}u’ +o*(ap® + B — 26p)

Lol a?—28) 1+ &
i 16"

Now, we prove
Lemma 1. {a =0 and Wa =0 on .

Proof. By the definition we have
1
oapuVy = a(-Z—Vﬂ —aVa).

Substituting (5.4) and (5.5) into this, and taking account of (2.12), (4.3)
and (5.3), we obtain

1
507V = {(a® + D = 2o}V +£{(1* — o) A€ - 26},

where we have put € = £o. This is rewritten as

(17) 30 (Vi) = {(0® + S = Soju(Y) +{(4 — )n(AY) — San(¥)}.

Differentiating this with respect to a vector field X again, and taking the
skew-symmetric parts for X and Y, we eventually have

{a(Xa) + en(AX) + (o + Du(X)}(Y12)
—{a(Ya) +en(AY) + (o + Du(¥)}(Xp)

+(Xa)(zen(Y) = 2au’u(Y)) - (Ya)(Fen(X) - 204°u(X)
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+(Xo)(en(AY) + Zu(¥)) - (Yo)(en(AX) + Ju(X)

= {(o? + D* - J0}Au(X,Y) + alp - 0)e(2g(APAX.Y) ~ Sg(¢X,Y))
- 30e(9(@AX,Y) — g($AY, X)) + a(Xe){(p — a)n(AY) — Zn(Y)}
~a(Ye){(p - a)n(AX) - In(X)},

where we have used the Codazzi equation (3.2). Putting X =U and Y = of
in the last equation and making use of (3.2), (4.10) and (5.12), we find

40’ u(Up) — 2ua(Wa){a(Ua) + (o + 2)u?}

— 20 e — L—Claozz(Ua) —eo?(Uo)
(5.18)

= {(o® + Dt - So}adu(g,U) - o*(pa - a? = D)Us

+ ga(a — p)ep?® — zeazlf.

Let £y be a set of points such that ({o), # 0 at p € Q and suppose that
Qo # 0. We then have from the last equation

2

3
gaZ(pa -« We = a?(Uc) — 202u* + §ca(a — o)

_ <
4
I N T B S
+(pa —a® + 4){5;1 (a® + 4c) 40}
on {2, where we have used (5.1), (5.3), (5.7) and (5.15). Since we have pa—a? =
p? — o, this is reformed as

(5.19) éoﬂ(uz -0 - E)Ua - a*(Uo)

= 2, Oy 4, (C 30— (50242 2y oo &
= 3« +4)u +{4(5a+4c) (5 +4c)(0 4)}N +4a(a 4)

on .
On the other hand, we have from (5.5)

o*(YB) - B(Xa?) + 2 (247 + o)u(Y) = e{ 5n(AY) — 2a0m(Y)}.

Using the same method as that used to derive (5.18) from (5.17), we can
deduce from the last equation the following :

a2(§ —0)Ue — o?¢(Uo)
E zlc—ea(pa -+ 2) + {(4pa + c)(a® + %c) — 4802 — c(pa + 2072)

s ey 3
s(pa—a® + 2) + Jeo = )i,
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which shows that

(5.20) “a (2 ~ o) - a2(Us)

3
= §CM4 + 20’(#2 —0+ 2) + (ca® — an — 400 + %);ﬁ

on Q. From (5.19) and (5.20) it follows that

1 c c c c
21 “(u? = 2)a? = 2 _IyA4Z _Z
(5.21) - (" = 5)a”(Ue) 3o = P+ golo =)
2
Ca?r— oo D2
+(4a 50— a0+ Y
on QQ.
Now, we know from (5.4)
1 3
(5.22) Ya=en(Y)+ (Wa)w(Y) + a(a2 + Zc)u(Y)

In the same way as above, it is, using (5.22), verified that

?{(Xen(Y) — (Ye)n(X)} + o’e{g(¢pAX,Y) — g(pAY, X)}
+a2 {X(Wa)w(Y) - Y (Wa)w(X)}

+(a? = S{(Xayu(Y) ~ (Vaju(X)} + oo + Scdu(X,¥) = 0.
Putting X = U and Y = ¢ in this and using (2.13), (3.2) and (5.13), we find
a?(Us) — (2% — %c)uzs - i—au(Wa) + ala® + %c)du(&, U)=0,
which together with (5.3) and (5.7) implies that

La2(Ue) = (02 - 2o + (0 = $)lat + )

on . Substituting this into (5.21), we find on Oy

2

N2t o — S Sy
4)u +2(a 4)(a +cr+2) 0.

Differentiating this with respect to a vector field X, and taking several
choices of X, we eventually have ¢ = 0 and hence Qy = (), where we have
used (5.1), (5.11), (5.12), (5.15) and (5.16). This means that {a = 0 is accom-
plished everywhere on Q. From this and (5.3) it follows that Wa = 0. This
completes the proof of Lemma 1. O

(2% + g)u‘l + (co® — 200% + co —

According to Lemma 1, equations (5.4}, (5.5) and (5.6) are reduced respec-
tively to

(5.23) aVa = (o? + ZC)U,

(5.24) o?V3 — BVa? + 3(35 — 202 + pa)U =0,
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(5:25)  adu(X,Y) = p(pa—a’ - D(X)w(¥) - n(¥)w(X))
+a{g(pAPAY, X) — g(¢pAPAX,Y)}.

6. Proof of main theorem

We will continue our discussions for real hypersurfaces M in M, (c), ¢ # 0
which satisfies V¢ R; = 0 and RS = SR as in section 5.

Using the formulas (2.9), (3.2), (4.12), (5.2), (5.23), (5.24) and (5.25), we
will prove

Theorem 6.1. Let M be a real hypersurface with non-negative scalar curvature
in o nonflat complex space form M, (c) which satisfies Ve¢Re = 0 and at the
same time RS = SR, where S denotes the Ricci tensor of M. Then M is
a Hopf hypersurface in My(c). Further, M is locally congruent to one of the
following hypersurfaces:
(1) In case that M, (c) = P, C with n(A£) # 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < 7/2 and r #
T/4;
(A2) a tube of radius r over a totally geodesic PxC (1 < k < n —2),
where 0 <r < w/2 and v # w/4.
(2) In case that M,(c) = H,,C,
(Ao) a horosphere;
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H,, 1 C;
(A2) a tube over a totally geodesic HyC (1 <k <n-—2).

Proof. Combining (5.23) to (5.24), we find
(6.1) aVp = {28a + g(2a +p)}U.
Because of (2.12) and (3.2), we can write (4.12) as

(62)  7(20-30)AU +{alp—a)(B—pa— ) = 2(0* + B —2pa+ U

1
= apAVu+a(ap = B)Va - S(p— a)aVB + ap’Vp — pPa(Wo)W,

where we have used (4.13), (5.10) and Lemma 1.
Differentiating (5.23) covariantly and taking the skew-symmetric parts ob-

tained, we find (a2 + gc)du(X, Y) = 0, where we have used (5.23) itself.

Similarly, from (6.1) we have {28« + 2(204 + p)}du(X,Y) = 0. Then we
have by above two equations

(6.3) o? + %c =0, Ba+ 2(204 +p) =0.
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In fact, if not, then we have du = 0. By taking a inner product (5.25)
with £, we verify that p = a. Hence (6.1) is led to %Vﬁ =B+ %C)U. From
this and (5.23) we see that uVu = p?U. Using these facts, (6.2) implies that
(u? + Z)AU = 0, which enables us to obtain u? + 2 =0 and thus Vi = 0. So

we have 1 = 0, a contradiction. Consequently we have Va = 0 and V3 =0 by

virtue of (6.1). Therefore we see that Vp = 0 and hence Vi = 0. Accordingly
(6.2) is reformed as

2(2p = 30)AU +{a(p —a)(B— pa— 5) —

which together with (3.2) and (6.3) implies that

C
(p* + 8 —2pa+ )}V =0,

2(3a—20) ~20(p" + B~ 2pa+ )~ 3(p— ) (8~ pa — ) = 0.

From this and (6.3) we see that 6p = T, which together with (4.1), (4.2) and
(6.3) implies that p = h.

On the other hand, we see, using (2.5), that the scalar curvature » on M is
given by

r=c(n* - 1)+ h?* - T.(*AA),

which together with o? + %c = 0 and 6k = 7o will produce a contradiction
because r is non-negative. Accordingly we conclude that Q = (. Therefore
we verify that the subset £ in M on which A — n(A£)€ # 0 is an empty set.
Namely, in M, (c), ¢ # 0, very real hypersurface satisfying V:R¢ = 0 and
R¢S = SR¢ is a Hopf hypersurface. Therefore we have U = 0 and moreover,
the function o should be constant on M ([6]). Thus, (3.1) is reformed as
aVeA = 0. This, together with (2.4) and (2.9) yields a(A¢ — ¢A) = 0.

When the constant o identically vanishes, by Cecil and Ryan [2] we assert
that M is a tube of radius T over certain Kahler submanifold in P,,C. But we

here note that any Hopf hypersurfaces in H,,C the function « never vanishing
(see [1], [8], [9]). For the non-vanishing constant «, by virtue of Theorem O-
MR due to Okumura [10] for ¢ > 0 and Montiel and Romero [8] for ¢ < 0
respectively we complete the proof of Theorem 6.1. (]

From above arguments and (6.3) we have

Theorem 6.2. Let M be a real hypersurface in a complex projective space
P,(C) which satisfies VcRe = 0 and at the same time R¢S = SR, where
S denotes the Ricci tensor of M. Then M is a Hopf hypersurface in P,(C).
Further, M is locally congruent to one of the following hypersurfaces:

(A1) a geodesic hypersphere of radius r, where 0 < r < /2 and r # 7 /4;
(As) a tube of radius T over a totally geodesic PrC (1 < k < n — 2), where
0<r<m/2 andr # /4,

where n(AE) # 0.
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