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HYPERCYCLICITY FOR TRANSLATIONS THROUGH
RUNGE’S THEOREM

ANDRE ARBEX HALLACK

ABSTRACT. In this paper, we first adapt Runge’s Theorem to work on
certain domains in any complex Banach space. Then, using this result,
we extend Birkhoff’s Theorem on the hypercyclicity of translations on
H(C) and Costakis’ and Sambarino’s result on the existence of common
hypercyclic functions for uncountable families of translations on H{C) to
subspaces of Hy(F) (in some cases all of H(E)), F being in a large class
of Banach spaces.

A continuous linear operator T : E — E on a Fréchet space E is called
hypercyeclic if there is a vector z € E such that its orbit under T, given by
Oz, T) = {x, Tz, T?z,.. .}, is dense in E (in this case the vector z is called a
hypercyclic vector for the operator T').

The first known example of hypercyclic operator comes through Birkhoff’s
Theorem [3], in 1929. Birkhoff showed that there is a function f in the space
H(C) of entire functions on C and a sequence (a,,) of positive numbers such that
the translates {f(2), f(z + a1), f(z + a2),...} are dense in H(C) (considering the
compact-open topology). Actually this doesn’t match with the above definition,
but in Birkhoff’s proof the a,as,... can be chosen as multiples of any real
positive number a. So we have that, for any a > 0, the translation by a,
T, : H(C) — H(C), given by T, (f)(2) = f(z+a), is a hypercyclic operator. It’s
also easy to see that if f € H(C) is hypercyclic for the translation T,,a > 0,
then g(z) = f(e~*2) is hypercyclic for T, for each 8 € [0,2n]. So, for every
b # 0in C, the translation Ty : H(C) — H(C) is a hypercyclic operator. In the
study of hypercyclicity for translations on H(C) one particular tool has been
shown to be very useful, namely:

Theorem 1 (Runge). If f is holomorphic in a neighborhood of a compact set
K C C and C\K is connected, then f can be uniformly approzimated on K by
polynomials. (see [4], p.85)

Runge’s Theorem becomes a natural tool when we deal with hypercyclicity
for translations not only because we are considering the compact-open topology
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on H(C), but mainly because we can produce compact sets (disjoint unions of
balls) as in Runge’s Theorem with translations of balls. Here are some examples
to show this: In [2}, Aron and Markose give a simpler (and shorter) proof of
Birkhoff’s result using Runge’s Theorem. In [5], Costakis and Sambarino, using
Runge’s Theorem strongly again, prove that there’s a dense G set of common
hypercyclic entire functions for all translations T3, b # 0, in H(C). In both
cases the compact set K used in Runge’s Theorem can be consider as a finite
union of disjoint closed balls. So it’s natural to ask if we have similar results
(to Runge’s) for simpler sets in other spaces and what we can do with such
results regarding hypercyclicity for translations. To simplify towards the result
we’re looking for, let’s state:

Theorem 2. Let By and By be two disjoint closed balls in a complex Banach
space E. If f is a holomorphic and bounded function in a uniform neighborhood
of B1UBy (by a uniform neighborhood of a set A we mean A+ B(0,9) for some
§ > 0), then f can be uniformly approzimated by polynomials on By U Bs.

Proof. Let ¢ > 0. First, since f is holomorphic and bounded in a uniform
neighborhood of B; U By, there are polynomials p; and p; in P(E)-polynomials
from E to C-such that sup,¢p, |p;j(z) — f(z)| <€/2, j =1,2. In fact, there’s
a & > 0 such that f is holomorphic and bounded in (B; U Bz) + B(0,4), so
the radius of boundedness of f ([7], p.52) in the center of each ball is strictly
greater than the radius of the ball. But since the radius of convergence (in each
center) is bigger than or equal to the radius of boundedness, the Taylor Series
of f around each center will converge uniformly on the corresponding ball. So
we can get py and ps as Taylor polynomials.

Let M = sup,cp, g, {Ip1(2)| + [p2(z)[}-

By the Hahn-Banach Separation Theorem, there exists ¢ € E’ such that
K;i = ¢(By) and Ky = ¢(B;) are disjoint convex compact sets in C. Now we
can apply Runge’s Theorem to the compact set K = K; U K C C (since
C\K is path-connected) and find ¢ € P(C) such that ¢ ~ 1 on K; and ¢ ~ 0
on Kz.

So the polynomial h = gop : E — C € P(FE) satisfies: h ~ 1 on B; and
h ~ 0 on By; that is sup,ep, |h(x) — 1] < ¢/2M and sup,,p, |M(z)| < ¢/2M.

Finally, p = p1 - h + p2 - (1 — h) is the polynomial we’re looking for. d

Corollary 3. Let By, Bs,..., B, be disjoint closed balls in a complex Banach
space E such that for each j = 1,2,...,n — 1 there’s a closed ball A; with
ByU---UB; C Aj and AjNBjy1 = ¢ . If f is a holomorphic and bounded
function in a uniform neighborhood of B;\UBsU- - -UB,,, then f can be uniformly
.approzimated by polynomials on By U By U ---U B,,; that is, given € > 0, there
exists p € P(E) such that sup,cp ...y, |P(x) — f(z)| <e.

Now, using Theorem 2 and its Corollary, we are able to extend some results
about hypercyclicity of translations on H(C) to more general spaces of holo-
morphic functions. Before doing this, let’s take a look at the function spaces
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for which we’ll obtain our hypercyclicity results. At first, we take a complex
Banach space F and try the translations on H(E). But a quick look at Theo-
rem 2 (we need our functions to be bounded on uniform neighborhoods of balls)
takes us to the Fréchet algebra H,(E) of the entire functions of bounded type
(bounded on bounded sets of E), with the topology of uniform convergence on
the balls of E. It’s clear that this adjustment is not necessary if E is finite
dimensional. But another detail arises when F is infinite dimensional, since
separability is a necessary condition in any discussion of hypercyclicity. If F is
infinite dimensional we can’t be certain that Hy(E) is separable, although there
are some known cases where this can occur. So we're dealing with closed (after
all we need completeness) separable subspaces of Hy(E) and these subspaces
must be translation-invariant, for the translations to be well defined as linear
continuous operators.

Therefore, our results on hypercyclicity for translations shall be valid on
closed, separable, translation-invariant subspaces X of Hy(E), E being any
Banach space. Let’s enumerate some concrete examples:

1) E finite dimensional: X = H(C");

2) E infinite dimensional with H,(FE) separable: X = Hy(FE) (examples:
E = ¢y, E =Tsirelson) ;

3) If E is a Banach space such that E’ is separable, then the space
X = Hy.(E) of functions in Hy(E) whose Taylor polynomials are in
the closure of polynomials of finite type is a closed, separable subspace
of Hy(E). But we also need it to be translation-invariant, so if we re-
quire E’ to have the approximation property, we’ll have Hp (E) =
Hyo(E) ([1], p.56), Hyu(E) being the space of functions that are
weakly-uniformly continuous on the balls of F, and it’s not difficult
to see that H,,,(F) is translation-invariant.

Finally, one additional condition should be pointed out:

Remark. (on Theorem 2): Applying Theorem 2 (and its Corollary), we will
be able to obtain a polynomial (so, an entire function) which approximates f
on disjoint closed balls. However, we may be working with a space that may
not contain all polynomials (e.g. 3 above) and since it’s crucial to produce a
function in this space, we must ask for one condition on the space to guarantee
this. Let’s take a closer look at the proof of Theorem 2 to find a reasonable
condition: The polynomial (which we want to be in our space) produced is
given by: p = p1-h+ps-(1—h). Each part of this sum should be in our space.
Since h and (1 — h) are finite type polynomials, p; and p» should produce
polynomials in the space when multiplied by finite type polynomials. But how
did we obtain p; and ps in the proof? p; and pe were Taylor approximations
to f on the respective balls. This motivates our Condition(*):

Definition 4. A space X C H(E), E complex Banach, satisfies Condition(*)
if the Taylor polynomials of the functions in X can be approximated by poly-
nomials whose products by finite type polynomials are still in the space X.
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Condition(*) is quite natural, in light of our previous known exarmples: The
cases 1) X = H(C™) and 2) X = H,(F) separable trivially satisfy Condi-
tion(*), since both types of spaces contain every polynomial. The third group
of examples, X = Hy.(F) (E’ separable and with the approximation property),
also satisfies Condition(*), by its very definition: Taylor polynomials of func-
tions in Hy.(E) are in the closure (so can be approximated by) of polynomials
of finite type!

The first result we’ll extend is Birkhoff’s, about hypercyclicity of transla-
tion operators. To do this, we’ll simply adapt Aron’s and Markose’s proof
[2] to a more general setting, replacing Runge’s Theorem (Theorem 1) by our
Theorem 2.

Theorem 5. Let E be a Banach space and X be a closed, separable, translation-
invariant subspace of Hy(E). Suppose also that X satisfies Condition(*). If
v # 0 is any non-zero vector in E, then the translation operator T, : X — X,
given by T,(f)(z) = f(z +v), is hypercyclic.

Proof. Let (g;); be a dense sequence in X such that each g; occurs infinitely
often in the sequence. Given v # 0 in E, we want to show that 7, : X — X
is hypercyclic. Let (D;); be a sequence of disjoint closed balls in E, each D;
of radius j and center ¢; = n;.v, with n; € IN, nqy <ng < ng < ---. It’s not
difficult to see that there’s a sequence (E;); of closed balls (in E) centered at
the origin such that D; UD; U---UD; C E; and E; N Djy1 = ¢ for every
j € IN. Since By N Dy = ¢ (disjoint closed balls), it follows from Theorem 2
and Condition(*) that there’s a polynomial ¢; € X such that
1

sup |Qu(e)| < 5 and  swp [Qi(a) ~ loa(z — e2)]l <
x€E; z€D>

In fact, use (within Theorem 2)

flz) = 0 in a uniform neighborhood of Ej
"] g1z —c2) in a uniform neighborhood of Ds .

Next, using again Theorem 2 and Condition(*), choose a polynomial Qs € X
such that

1 1

sup |@2(z)| < 2z and  sup |Qa(x) ~ [g2(2 — c3) — Qu(2)]] < 55 -
z€Es z€Dg

Proceeding in this way, we construct a sequence of polynomials (Qn)n C X

such that for every n > 1:

1) sup 1Qn(e)| < 5
zeE,

n—1 1
(D) sup Qu(x) = |gn(z — cup) - }; Q@) || < 5
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n
By (I), the sequence ZQj is a Cauchy sequence in X. So we have

Jj=1 n

o0
h = Z Q; € X and we’ll now show that h is hypercyclic for T,,. To do this,
j=1
it suffices to show that given R > 0, ¢ > 0 and g € (g;);, there’s an [ € IN such
that

sup |h(z +¢) —g(z)| <e.
lzl<R

1
Indeed, we can choose I € IN such that [ > R, ;. < £ and g1 =g If
i)l < R then w =2 4+ ¢; € B[0; R] + ¢; C B|0;1} + ¢, = D; C E;. Then
sup |h(z +c) — g(x)| < sup h(w) — gi-1(w — e
wely

lzlI<R
I-1 -1
< sup {h{w) = > Q;(w)| + sup Qi(w)| —gi-1(w—a)|.
’U)EDL 3:1 ’U)EDI J:1

In the first expression above, we have

1-1 00
sup h(w)—ZQj(w) < sup ZQj(w)
i=1 j=1

weD; wEE;
o0
1 1 1 €
< . < — . ez —— < —,
< leug Qi (w)] < 5 + 5 + <
For the second part, from (II):
1-1
1 €
sup Qi(w)| = gi-1(w —a)| < 55 < 5 -
weD, =1
Thus, sup |h(z + ¢) — g(z)| < €, as required. O

lzll<R

Our next result refers to the existence of common hypercyclic functions for
translations. It’s known that every hypercyclic operator on a Fréchet space
has a residual set of hypercyclic vectors [6]. Since a countable intersection
of residual sets is still a residual set, it’s easy to see that countable families
of hypercyclic operators share common hypercyclic vectors (vectors which are
hypercyclic for all operators in the family). The subject becomes more inter-
esting when we consider uncountable families of hypercyclic operators and ask
whether or not they share common hypercyclic vectors. In [5], Costakis and
Sambarino proved that there’s a residual set of common hypercyclic functions
for all translations on H(C). In their proof, they used strongly Runge’s Theo-
rem, with the compact set considered each time being a finite union of disjoint
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closed balls in C. So it’s natural to ask how we can use Corollary 3 of Theorem
2 to extend their result. The result we get is the following:

Theorem 6. Let F be a Banach space and X be a closed, separable, translation-
invariant subspace of Hy(E). Suppose also that X satisfies Condition(*). For
any v # 0 in E, the (uncountable) family of translations { Te., ; c#£0 in C}
share a common residual set of hypercyclic functions.

Just as the analogous result of Costakis and Sambarino in [5], Theorem 6
is an immediate consequence of two theorems, which we will state below. It
should be pointed out that the proofs are essentially Costakis’ and Sambarino’s
proofs (with the obvious adaptations) for the existence of a residual set of
common hypercyclic functions for all translations on H(C). Now, our Corollary
3 of Theorem 2 fits perfectly in these proofs, replacing Runge’s Theorem and
allowing us to obtain a similar result for more general spaces. So, Theorem 6
is obtained by combining the following results:

Theorem 7. Let E be a Banach space and X be a closed, separable, translation-
invariant subspace of Hy(F). Suppose also that X satisfies Condition(*). If v
is @ unit vector in E then the set of common hypercyclic functions for all trans-
lations Tyenie ,, : X — X, 0 €[0,1], 4s residual in X.

Theorem 8. Let E be a Banach space and X be a closed, separable, translation-
invariant subspace of Hy(F). Suppose also that X satisfies Condition(*). If v
15 a unit vector in E and f € X is hypercyclic for the translation T, : X — X,
then f is hypercyclic for every translation of the family {T; ..}, -
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