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ARITHMETIC OF THE MODULAR FUNCTIONS j, 2 AND ji3

CuaNG HEoN KiMm AND Ja Kyune Koo

ABSTRACT. We find the uniformizers of modular curves X1(N) (N = 2,3)
and explore the relationship with Thompson series and number theoretic
property.

1. Introduction
Let $ be the complex upper half plane and let I'y(N) be a congruence sub-

group of SL2(Z) whose elements are congruent to ( mod N (N =

1 =
0 1)
1,2,3,...). Since the group I';(N) acts on §) by linear fractional transforma-
tions, we get the modular curve X;(N) =T';(N)\$H*, as the projective closure
of smooth affine curve Ty (N)\$, with genus g1, 5. Since g1 x = 0 only for the
eleven cases 1 < N < 10 and N = 12 ([6]), the function field K (X1(N)) of the
curve X1(N) is a rational function field over C for such N.

In this article we shall find the field generators ji o and ji,3 as the uni-
formizers of modular curves X;(N) when N = 2 and 3, respectively. In §3
J1,2 is constructed by making use of the classical Jacobi theta functions 6,
and ;. Meanwhile in §4 j;3 is made by the Eisenstein series of weight 4.
In §5 we shall estimate the normalized generators N(j1,2) and N(j1,3) which
turn out to be the Thompson series of type 2B and 3B, respectively. And,
when 7 € N Q(\/——d) for a square free positive integer d, we shall show that
N(G1,n)(7) (N = 2,3) becomes an algebraic integer.

Throughout the article we adopt the following notations:

(1) $* the extended complex upper half plane

(2) T(N) ={y€ SLy(Z)]y=1I mod N}

(3) EO(N) the Hecke subgroup {( 24 ) € I'(1)] ¢=0 mod N}

(4) T the inhomogeneous group of I'(=T/ £ I)

(5) qn = eQ-n-iz/h’ 2€9H

(6) Mi(T1(N)) the space of modular forms of weight k with respect to

the group I'1(N)
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(7) fl

(a3)=F(E0)-2)
(8) f|[( ag)]k = (ad—bc)§ 'f((ﬁg)w) ez +d)7F
(9) vo(F) the sum of orders of zeros of a modular form (or function) F

2. Fundamental region of X;(N)
Let I" be a congruence subgroup of SLa(Z).
Definition. An (open) fundamental region R for T' is an open subset of $*
with the properties:
1. there do not exist v € I" and w, z € R for which w # z and w = vz,
2. for any z € H*, there exists v € I" such that vz € R the closure of R.

We will develop some elementary results about fundamental regions, which
will give us useful geometric informations about the modular curve X;(N). Let
I''(N) be a congruence subgroup of SLs(Z) whose elements are congruent to
(19) mod N (N =1,2,3,...). We note that two groups I';(N) and I''(N)
are conjugate:

(1) rl(N)z(](\)’ 2) T\ (N) (I/ON (1’)

It turns out that the I'* groups are more convenient than their I'; counterparts
in drawing pictures and making geometric computations. Now we will draw
fundamental regions using Ferenbaugh’s idea ([4], §3). Suppose ¢,r € R with
r > 0. Then we define the sets
arc(c,7) ={z € H*| |z —¢| =71}
inside(c,7) = {2z € H*| |z —¢| <7}
outside(c, ) = {z € H"| |z —¢| > r}.
Let v = (2% ) be an element of I, and assume c # 0. Then we define
arc(y) = arc{a/c,1/|c}),
inside(sy) = inside(a/c,1/|c|) and
outside(y) = outside(a/c, 1/|c]).
If ¢ = 0, v is of the form z — z + n for some integer n. We shall assume + is
not the identity, so n # 0. We then adopt the following conventions: for n > 0,

we define
n

- fren =)
inside(y) = {2 € 97| Re(z) > %}
) =

{z € $*| Re(z) < g}

arc(

outside(
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While for n < 0, we define “arc” in the same way and reverse the inequalities
in the definitions of “inside” and “outside”. Then we have

Proposition 1. The elementy € I'—{I} sends arc(y~!) to arc(v), inside(y™")
to outside(y) and outside(y™!) to inside(7y).

Proof. [4], Proposition 3.1. U

Theorem 2. With definitions as above, a fundamental region R for T' is given
by

R= ﬂ outside(y).
vel—{I}

Proof. [4], Theorem 3.3. U

Now the following theorem allows us to get the generators of the group T.

Theorem 3. Let T be a congruence subgroup of T(1) of finite index and R
be a fundamental region for I'. Then the sides of R can be grouped into pairs
Xy Ao (1= 1,2,...,8) in such a way that A\; C R and X, = v;\; where v; €

I'((i=1,2,...,8). ~;’s are called boundary substitutions of R. Furthermore,

T' is generated by the boundary substitutions v1,...,7s.

Proof. [13], Theorem 2.4.4 (or [7], Theorem 1). O

3. Modular function j o

Let us take I' = I''(2). Put

(12 4 (L0
M=o 1) P MT Ay 1)

If R, is a fundamental region of [''(2), then by Theorem 2

2
Ry = ﬂ outside(y!)
i=1

and its figure is as follows.

We denote by St the set of inequivalent cusps of T'. Then as in the above
figure Spi(yy = {o0,0}. Furthermore it follows from Theorem 3 that g (2) is
generated by 71 and 7,. Thus we obtain the following theorem by (1).
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[l 4
—

Ry

[V

-2 -1 0 1 2

(1%)
Theorem 4. (i) Sr,(2) = {00,0}. All cusps of T'1(2) are regular ([11], [16]).
R ) 11 10
(i) T'1(2) s generated by (0 1) and (2 1).

For later use we are in need of calculating the widths of the cusps of I'1 (2).

Lemma 5. Let a/c € P1(Q) be a cusp with (a,c) = 1. Then the width of a/c
in X1(N) is given by N/(¢,N) if N # 4.

Proof. (8], Lemma 3. g

We then have the following table of inequivalent cusps of I'1(2):

Table 1. Cusps of I'1(2)
cusp oo | O
width | 12

Now, we recall the Jacobi theta functions 6s, 03, 84 defined by

n+1)2
HOEDI

neZ

O3(2) =Y g

n€z

8a(z) = 3 (~1)"gy

nez
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for 2 € $. Here we list the following useful transformation formulas ([13]
pp.218-219).

2) B2(z + 1) = ei™0,(2)
(3) O3(z + 1) = 64(2)
(4) ba(z+1) = 03(z>

()
(6) o - 1) = il
(-

(7) 04 ) ’LZ>202(Z)

Put j1,2(2) = 62(2)%/04(22)8. Then we obtain the following theorem.

Theorem 6. (i) 05(2)%,04(22)% € My(T1(2)).
(ii)l f{(Xl(Q)) = C(j12(2)) and j1,2(00) = 0 (simple zero), j1,2(0) = oo (simple
pole).

Proof. For the first part, we must check the invariance of slash operator and

the cusp conditions. Let T = (}1) and § = (9 '). Since T and ST2S

generate I'1 (2) by Theorem 4-(ii), it is enough to check the invariance for these
generators.
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04(22)%|(1), = 04(22 + 2)®
= 04(22)® by (3) and (4)

2\ 8
94(22)8“5]4 =274, (-;)

1
= 167 H(-2i2)204(22)}° by (5)
= 04(22’)8.
Now we’ll check the boundary conditions.
(i) s = oo
Since 3(z) = 2gs(1+q+¢*+---), a2(2)® = Bq(1 + g+ ¢ +--- )%
Hence 02(z)® has a simple zero at s = co. On the other hand, 64(22)% =

(Cnez(=1"g")8 = (1 - 2¢+2¢* —2¢° + -+ )%. Thus 64(22)%]s—00 = L.
(if) s =0:

62(2)%|a=0 = lim 05(2)°;sy,
= lim 64(z)® by (8)
=1

and

04(22)8|3=0

lim 64(22)% s,
zZ\8

Jlim 150 (5)" by @)

1
= lim E-28q(1+q+q3+'~)8

Z—100

Il

=0. (a simple zero)

Now, we’ll prove the second part. From the well-known formula ([16], p.39)
concerning the sum of orders of zeros of modular forms, it follows that

1/0(92(2)8) = V0(04(22:)8) =1.
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Hence 62(2)® (resp. 64(22)%) has no other zeros in X(2) except at s = oo
(resp. s = 0). Therefore [K(X1(4)):C(j1,2(2))] = vo(j12(2)) = 1, and so (ii)
follows. O

4. Modular function j; 3

Now let us take I' = £T'1(3), and put v; = (é i’) and y; = G (1)> Let

R3 be a fundamental region of I''(3). Then it is given by

2
R3 = ﬂ outside(y!)

i=1

with the following figure.

o
~—

Rs

[V

-2 -3 0

rOfCo
[Sv]

(i9)
As is seen in the above figure Sp1(3) = {00, 0}. Hence it follows from Theorem
3 that f1(3) is generated by 7, and 7,. And we obtain the following theorem
by (1).
Theorem 7. (i) Sr,(3) = {00,0}. All cusps of T'1(3) are regular ([11], [16]).

T ) 11 1 0
(ii) T'1(3) is generated by <0 1> and <3 1).

By Lemma 5 we have the following table of inequivalent cusps of T'1(3):

Table 2. Cusps of ['1(3)
cusp | oo { 0
width | 1|3
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Let E4(2) be the normalized Eisenstein series of weight 4 defined by
1 ’ 1
Ey(2) = —— —— ZEH
9= %@ 2, e v

where the summation runs over pairs of integers m,n not both zero, and ((s)
denotes the Riemann zeta function for s € C. Then it has the following g-
expansion ([9], p.111):

(10) Ey(2)=1+ 240iag(n)q“, zZEH.

n=1
Put j1,3(z) = E4(Z)/E4(3Z).
Theorem 8. We have

() j1,3(2) € K(X1(3)) and j1 3(c0) =1, j1,3(0) = 81.
(i) K(X1(3)) = C(j1,3(2)).

Proof. 1t is well known ([9], p.110 or [16], pp.32-33) that E4(z) is the modular
form of weight 4 with respect to the full modular group I'(1). Hence E4 satisfies
E4(z +1) = E4(z) and Ey(—1) = 2*E4(2) for each z € $. We observe that

(39)7"T(1)(39)NT(1) = To(3) = £T1(3).
This implies that E4(3z) € My(I'1(3)). Thus
71,3(2) = Ea(2)/ Ea(32) € K(X1(3)).
From (10) it follows that j; 3(c0) = 1. And
J1,3(0) = lim j1,3|( 0-1)
Z—>r100 10
. 1 E, (-1 24E4(z
= lim ji3 (——) = E4( g) = a )z
Fmieo z (=2 (9)'Ea(3)
: 14240(q+9¢* +---)
= lim 81-
z—1>rznoo 1+ 240(Q3 + QQ32 + - )

= 81.

Now we consider (ii). From the zero formula we get that vo(F) = § for any
F e M4(F1 (3)) And I/o(E4(Z)) = l/o(E4(3Z)) = % so that

. 4

(11) vo(j1,3) < 3
Since 73,3 is not a constant function, we have

[K(X1(3)) : C(j1,3)] = vo(jr,3)s

which is an integer greater than or equal to 1. By (11) it must be 1, This
proves (ii). O
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5. Some remarks on Thompson series

For a modular function f, we call f normalized if its g-series is
1 2
E+0+a1q+azq +oe

Lemma 9. The normalized generator of a genus zero function field is unique.

Proof. [7], Lemma 8. O

Let § be the set of functions f(z) satisfying the following conditions:

(i) f(z) € K(X(I)) for some discrete subgroup I of SLz(R) that contains
T'o(N) for some N.
(i) The genus of the curve X(T') is 0 and its function field K(X(T')) is
equal to C(f).
(ili) In a neighborhood of 0o, f(z) is expressed in the form

f(z) = 3 + Zanq", an € C.
n=0

We say that a pair (G,¢) is a “moonshine” for a finite group G if ¢ is a
function from G to § and the mapping ¢ — a, (o) from G to C is a generalized
character of G when ¢,(2) = ¢ + ao(0) + 202 an(0)g" for o € G. In
particular, ¢, is a class function of G.

Finding or constructing a “moonshine” (G, ¢) for a given group G, however,
involves some nontrivial work. It is because that for each element o of G, we
have to find a natural number N and a Fuchsian group I' containing I'g(N) in
such a way that its function field K (X (T')) is equal to C(¢,) and the coefficients
an (o) in the expansion of ¢, (z) at co induce generalized characters for alln > 1.

Let j be the modular invariant of I'(1) whose g-series is

(12) J=q '+ T444+196884 g+ =) ¢ g
T

Then j — 744 is the normalized generator of I'(1). Let M be the monster
simple group of order approximately 8 x 10°%. Thompson proposed that the
coefficients in the g-series for j — 744 be replaced by the representations of M
so that we obtain a formal series

H,q ' '+0+H qg+Hy ¢+

in which the H,. are certain representations of M called head representations.
H, has degree ¢, as in (12}, for example, H_; is the trivial representation
(degree 1), while H; is the sum of this and the degree 196883 representation
and Hy is the sum of former two and the degree 21296876 representation ([18]).
The following theorem conjectured by Thompson ([2]) and proved by Borcherds
([1]) shows that there exists a “moonshine” for the monster group M.



56 CHANG HEON KIM AND JA KYUNG KOO

Theorem 10. The series
1
T = E +0+H1(m)q+H2(m)q2 + .-

is the normalized generator of a genus zero function field arising from a group
between To(N) and its normalizer in PSLy(R), where m is an element of M
and H,.(m) is the character value of head representation H, at m.

We will construct such a normalized generator (or the Hauptmodul) of the
function field K(X;(N)) (N = 2,3) from the modular function ji,y (N = 2,3)
mentioned in Theorem 6 and Theorem 8.

28 28 0,(22)8
Ju2 02(2)®
(1 -2¢+2¢* -2¢°+--- )®
{2gs(1+g+¢3+---)}8
1
P 24 + 276q — 2048¢2 + 11202¢® — 49152¢* + 184024¢° + - - ,

which is in ¢7'Z[[g]]. Let N(j1,2) = J21—82 + 24. In the case of the modular
function j; 3, we consider
240 240 Ey4(3z)
J1,3—1  Ea(z) — Ea(32)
_240{1 + 240(¢® + 9¢° + 28¢° + 73¢'* + --- )}
T 240(qg+ 9¢2 + 273 + 7T3¢* + 126¢° + - - - )

1
=, 9 + 54q — T6¢° — 243¢° + 1188¢* — 1384¢° +--- ,

which is also in ¢ ~*Z[g]]. Let N(j1,3) = 72325 +9. Then the above computa-
tions show that N(j12) and N(j1,3) are the normalized generators of K (X;(2))
and K(X,(3)), respectively. On the other hand by observing T'o(2) = T'1(2) and
To(3) = I'1(3), we can get the normalized generators using 7-functions (p.57 in
[5] or Table 3 in [2]). Since the normalized generator is unique (Lemma 9) we

get the following identities after adjusting the constant terms.

2° 04(22)° _ m(2)*
62(2)® n(22)*

and
240 E4(32)  n(2)*?
Ey(z) — E4(32)  n(32)12
By Table 3 in [2] and Theorem 10, N(j1,2) (resp. N(j1,3)) corresponds to the

Thompson series of type 2B (resp. type 3B). By Theorem 6-(ii) and 8-(ii) we
have the following tables:

+ 3.
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Table 3. Cusp values of N(j1,2)
s ool 0
N(j12)(s) | oo | 24

Table 4. Cusp values of N(j1,3)
] | 0
N(j13)(s) | oo | 12

Lemma 11. Let N be a positive integer such that the modular curve X,(N)
s of genus 0. Let t be an element of K(X1(N)) for which (i) K(X1(N)) =
C(t) and (ii) t has no poles except for a simple pole at one cusp s. Let

f € K(X1(N)). If f has a pole of order n only at s, then f can be written as
a polynomial in t of degree n.

Proof. Take v € SLy(Z) such that yoo = s. Let h be the width of s. Then we
have

b1l
" e qn
and
1
fly =bp — 4+ -+
ly o
for some ¢ # 0 and b,, # 0. Thus
1
(f =bn()")y = A1 =+
h

for some \,_;. And
1

n—2
h

for some A,—o. In this way we can choose \; € C such that

(f = bulet)” - )‘n—l(Ct)n_l)”v =An—2 +oee

(f = balet)” = Mnoa(et)™ ! =+ = Ai(e))]y € Cllg,])-
Let g = f — bp(et)™ = Ay_1(ct)® L — -+ — Ay(ct). Then g has no poles in
5*, and so g must be a constant, say \g. Therefore we end up with f =
brc™™ + Ap_1c™ 1L 4o et + Ao, as desired. O

Theorem 12. Let d be a square free positive integer and t be the Hauptmodul
N(jin), (N=2,3). For 1€ Q(v/=d)N$H, t(r) is an algebraic integer.

1 .
Proof. Let j(z) = — + 744 + 196884q + - - - . It is well-known that j(7) is an
q

algebraic integer for 7 € Q(v/—d) N $ ([10], [16]). For algebraic proofs, see [3],
(12], [15] and [17]. Now, we view j as a function on the modular curve X;(N).
Let s be a cusp of I'; (V) other than co, whose width is hs. Then ;7 has a pole
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of order hy at the cusp s. On the other hand, ¢(z) — ¢(s) has a simple zero at
s. Thus

Jx I e -t

s€ SFI(N)\{oo}

has a pole only at oo whose degree is 3 if N = 2, and 4 if N = 3. And so by
Lemma 11, it is a monic polynomial in ¢ of degree 3 or 4 according as N = 2
or 3, which we denote by f(¢). With the aid of Table 1~4, we can compute the
product part in the above more explicitly, that is,

o -4, iN=2
IT @)= (t—12)%, i N=3

s € Srl(N)\{oo}

Since j and t have integer coefficients in the g-expansions, f(t) is a monic
polynomial in Z[t] of degree 3 or 4 according as N = 2 or 3. This claims
that t(7) is integral over Z[j(r)]. Therefore ¢(7) is integral over Z for 7 €

QvV=d)n$H. o
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