ARITHMETIC OF THE MODULAR FUNCTIONS $j_{1,2}$ AND $j_{1,3}$

CHANG HEON KIM AND JA KYUNG KOO

ABSTRACT. We find the uniformizers of modular curves $X_1(N)$ (N=2,3) and explore the relationship with Thompson series and number theoretic property.

1. Introduction

Let \mathfrak{H} be the complex upper half plane and let $\Gamma_1(N)$ be a congruence subgroup of $SL_2(\mathbb{Z})$ whose elements are congruent to $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N$ $(N=1,2,3,\dots)$. Since the group $\Gamma_1(N)$ acts on \mathfrak{H} by linear fractional transformations, we get the modular curve $X_1(N) = \Gamma_1(N) \backslash \mathfrak{H}^*$, as the projective closure of smooth affine curve $\Gamma_1(N) \backslash \mathfrak{H}$, with genus $g_{1,N}$. Since $g_{1,N} = 0$ only for the eleven cases $1 \leq N \leq 10$ and N = 12 ([6]), the function field $K(X_1(N))$ of the curve $X_1(N)$ is a rational function field over \mathbb{C} for such N.

In this article we shall find the field generators $j_{1,2}$ and $j_{1,3}$ as the uniformizers of modular curves $X_1(N)$ when N=2 and 3, respectively. In §3 $j_{1,2}$ is constructed by making use of the classical Jacobi theta functions θ_2 and θ_4 . Meanwhile in §4 $j_{1,3}$ is made by the Eisenstein series of weight 4. In §5 we shall estimate the normalized generators $N(j_{1,2})$ and $N(j_{1,3})$ which turn out to be the Thompson series of type 2B and 3B, respectively. And, when $\tau \in \mathfrak{H} \cap \mathbb{Q}(\sqrt{-d})$ for a square free positive integer d, we shall show that $N(j_{1,N})(\tau)$ (N=2,3) becomes an algebraic integer.

Throughout the article we adopt the following notations:

- (1) \mathfrak{H}^* the extended complex upper half plane
- (2) $\Gamma(N) = \{ \gamma \in SL_2(\mathbb{Z}) | \gamma \equiv I \mod N \}$
- (3) $\Gamma_0(N)$ the Hecke subgroup $\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1) | c \equiv 0 \mod N \}$
- (4) $\overline{\Gamma}$ the inhomogeneous group of $\Gamma(=\Gamma/\pm I)$
- $(5) q_h = e^{2\pi i z/h}, z \in \mathfrak{H}$
- (6) $M_k(\Gamma_1(N))$ the space of modular forms of weight k with respect to the group $\Gamma_1(N)$

Received August 26, 2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ 11F03,\ 11F06,\ 11F11.$

 $[\]it Key\ words\ and\ phrases.$ modular curve, uniformizer, normalized generator, Thompson series.

(7)
$$f|_{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)} = f(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z)$$

$$(8) \ f|_{\left[\left(\begin{array}{cc} a & b \\ \end{array}\right)\right]_{k}} = (ad - bc)^{\frac{k}{2}} \cdot f(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z) \cdot (cz + d)^{-k}$$

(8) $f|_{\begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix}|_k} = (ad - bc)^{\frac{k}{2}} \cdot f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) \cdot z) \cdot (cz + d)^{-k}$ (9) $\nu_0(F)$ the sum of orders of zeros of a modular form (or function) F

2. Fundamental region of $X_1(N)$

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$.

Definition. An (open) fundamental region R for Γ is an open subset of \mathfrak{H}^* with the properties:

- 1. there do not exist $\gamma \in \Gamma$ and $w, z \in R$ for which $w \neq z$ and $w = \gamma z$,
- 2. for any $z \in \mathfrak{H}^*$, there exists $\gamma \in \Gamma$ such that $\gamma z \in \overline{R}$ the closure of R.

We will develop some elementary results about fundamental regions, which will give us useful geometric informations about the modular curve $X_1(N)$. Let $\Gamma^1(N)$ be a congruence subgroup of $SL_2(\mathbb{Z})$ whose elements are congruent to $\binom{10}{*1}$ mod N $(N=1,2,3,\ldots)$. We note that two groups $\Gamma_1(N)$ and $\Gamma^1(N)$ are conjugate:

(1)
$$\Gamma^{1}(N) = \begin{pmatrix} N & 0 \\ 0 & 1 \end{pmatrix} \Gamma_{1}(N) \begin{pmatrix} 1/N & 0 \\ 0 & 1 \end{pmatrix}.$$

It turns out that the Γ^1 groups are more convenient than their Γ_1 counterparts in drawing pictures and making geometric computations. Now we will draw fundamental regions using Ferenbaugh's idea ([4], §3). Suppose $c, r \in \mathbb{R}$ with r > 0. Then we define the sets

$$\begin{aligned} &\operatorname{arc}(c,r) = \{z \in \mathfrak{H}^* | \ |z - c| = r\} \\ &\operatorname{inside}(c,r) = \{z \in \mathfrak{H}^* | \ |z - c| < r\} \\ &\operatorname{outside}(c,r) = \{z \in \mathfrak{H}^* | \ |z - c| > r\}. \end{aligned}$$

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of Γ , and assume $c \neq 0$. Then we define

$$\begin{split} &\operatorname{arc}(\gamma) = \operatorname{arc}(a/c, 1/|c|),\\ &\operatorname{inside}(\gamma) = \operatorname{inside}(a/c, 1/|c|) \quad \text{and}\\ &\operatorname{outside}(\gamma) = \operatorname{outside}(a/c, 1/|c|). \end{split}$$

If $c=0, \gamma$ is of the form $z\mapsto z+n$ for some integer n. We shall assume γ is not the identity, so $n \neq 0$. We then adopt the following conventions: for n > 0, we define

$$\begin{split} &\operatorname{arc}(\gamma) = \left\{z \in \mathfrak{H}^*| \ \operatorname{Re}(z) = \frac{n}{2} \right\} \\ &\operatorname{inside}(\gamma) = \left\{z \in \mathfrak{H}^*| \ \operatorname{Re}(z) > \frac{n}{2} \right\} \\ &\operatorname{outside}(\gamma) = \left\{z \in \mathfrak{H}^*| \ \operatorname{Re}(z) < \frac{n}{2} \right\}. \end{split}$$

While for n < 0, we define "arc" in the same way and reverse the inequalities in the definitions of "inside" and "outside". Then we have

Proposition 1. The element $\gamma \in \Gamma - \{I\}$ sends $\operatorname{arc}(\gamma^{-1})$ to $\operatorname{arc}(\gamma)$, inside (γ^{-1}) to $\operatorname{outside}(\gamma)$ and $\operatorname{outside}(\gamma^{-1})$ to $\operatorname{inside}(\gamma)$.

Theorem 2. With definitions as above, a fundamental region R for Γ is given by

$$R = \bigcap_{\gamma \in \Gamma - \{I\}} \text{ outside}(\gamma).$$

Proof. [4], Theorem 3.3.

Now the following theorem allows us to get the generators of the group $\overline{\Gamma}$.

Theorem 3. Let $\overline{\Gamma}$ be a congruence subgroup of $\overline{\Gamma}(1)$ of finite index and R be a fundamental region for $\overline{\Gamma}$. Then the sides of R can be grouped into pairs λ_i, λ_i' $(i=1,2,\ldots,s)$ in such a way that $\lambda_i \subseteq \overline{R}$ and $\lambda_i' = \gamma_i \lambda_i$ where $\gamma_i \in \overline{\Gamma}$ $(i=1,2,\ldots,s)$. γ_i 's are called boundary substitutions of R. Furthermore, $\overline{\Gamma}$ is generated by the boundary substitutions γ_1,\ldots,γ_s .

Proof. [13], Theorem 2.4.4 (or [7], Theorem 1).
$$\Box$$

3. Modular function $j_{1,2}$

Let us take $\Gamma = \Gamma^1(2)$. Put

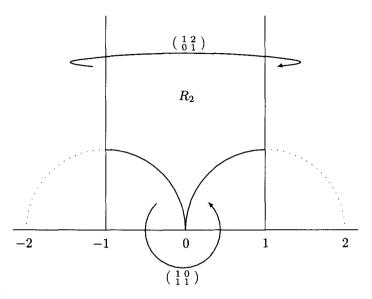
$$\gamma_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $\gamma_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

If R_2 is a fundamental region of $\Gamma^1(2)$, then by Theorem 2

$$R_2 = \bigcap_{i=1}^2 \text{outside}(\gamma_i^{\pm 1})$$

and its figure is as follows.

We denote by S_{Γ} the set of inequivalent cusps of Γ . Then as in the above figure $S_{\Gamma^1(2)} = \{\infty, 0\}$. Furthermore it follows from Theorem 3 that $\overline{\Gamma}^1(2)$ is generated by γ_1 and γ_2 . Thus we obtain the following theorem by (1).



Theorem 4. (i) $S_{\Gamma_1(2)} = \{\infty, 0\}$. All cusps of $\Gamma_1(2)$ are regular ([11], [16]). (ii) $\overline{\Gamma}_1(2)$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.

For later use we are in need of calculating the widths of the cusps of $\Gamma_1(2)$.

Lemma 5. Let $a/c \in \mathbb{P}^1(\mathbb{Q})$ be a cusp with (a,c) = 1. Then the width of a/c in $X_1(N)$ is given by N/(c,N) if $N \neq 4$.

We then have the following table of inequivalent cusps of $\Gamma_1(2)$:

Table 1. Cusps of $\Gamma_1(2)$ $\begin{array}{c|c} \text{cusp} & \infty & 0 \\ \text{width} & 1 & 2 \end{array}$

Now, we recall the Jacobi theta functions $\theta_2, \theta_3, \theta_4$ defined by

$$\begin{aligned} \theta_2(z) &= \sum_{n \in \mathbb{Z}} q_2^{(n + \frac{1}{2})^2} \\ \theta_3(z) &= \sum_{n \in \mathbb{Z}} q_2^{n^2} \\ \theta_4(z) &= \sum_{n \in \mathbb{Z}} (-1)^n q_2^{n^2} \end{aligned}$$

for $z \in \mathfrak{H}$. Here we list the following useful transformation formulas ([13] pp.218–219).

(2)
$$\theta_2(z+1) = e^{\frac{1}{4}\pi i}\theta_2(z)$$

(3)
$$\theta_3(z+1) = \theta_4(z)$$

$$\theta_4(z+1) = \theta_3(z)$$

(5)
$$\theta_2\left(-\frac{1}{z}\right) = (-iz)^{\frac{1}{2}}\theta_4(z)$$

(6)
$$\theta_3\left(-\frac{1}{z}\right) = (-iz)^{\frac{1}{2}}\theta_3(z)$$

(7)
$$\theta_4\left(-\frac{1}{z}\right) = (-iz)^{\frac{1}{2}}\theta_2(z).$$

Put $j_{1,2}(z) = \theta_2(z)^8/\theta_4(2z)^8$. Then we obtain the following theorem.

Theorem 6. (i) $\theta_2(z)^8$, $\theta_4(2z)^8 \in M_4(\Gamma_1(2))$. (ii) $K(X_1(2)) = \mathbb{C}(j_{1,2}(z))$ and $j_{1,2}(\infty) = 0$ (simple zero), $j_{1,2}(0) = \infty$ (simple pole).

Proof. For the first part, we must check the invariance of slash operator and the cusp conditions. Let $T=\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right)$ and $S=\left(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right)$. Since T and ST^2S generate $\overline{\Gamma}_1(2)$ by Theorem 4-(ii), it is enough to check the invariance for these generators.

$$\theta_{2}(z)^{8}|_{[T]_{4}} = \theta_{2}(z+1)^{8}$$

$$= (e^{\frac{\pi i}{4}}\theta_{2}(z))^{8} \text{ by } (2)$$

$$= \theta_{2}(z)^{8}$$

$$\theta_{2}(z)^{8}|_{[S]_{4}} = z^{-4}\theta_{2}\left(-\frac{1}{z}\right)^{8}$$

$$= z^{-4}\{(-iz)^{\frac{1}{2}}\theta_{4}(z)\}^{8} \text{ by } (5)$$

$$= \theta_{4}(z)^{8}$$

$$\theta_{2}(z)^{8}|_{[ST^{2}]_{4}} = \theta_{4}(z)^{8}|_{[T^{2}]_{4}}$$

$$= \theta_{4}(z)^{8} \text{ by } (3) \text{ and } (4)$$

$$\theta_{2}(z)^{8}|_{[ST^{2}S]_{4}} = \theta_{4}(z)^{8}|_{[S]_{4}}$$

$$= z^{-4}\{(-iz)^{\frac{1}{2}}\theta_{2}(z)\}^{8} \text{ by } (7)$$

$$= \theta_{2}(z)^{8}$$

$$\theta_{4}(2z)^{8}|_{[T]_{4}} = \theta_{4}(2z+2)^{8}$$

$$= \theta_{4}(2z)^{8} \text{ by (3) and (4)}$$

$$\theta_{4}(2z)^{8}|_{[S]_{4}} = z^{-4}\theta_{4}\left(-\frac{2}{z}\right)^{8}$$

$$= z^{-4}\left\{\left(-\frac{iz}{2}\right)^{\frac{1}{2}}\theta_{2}\left(\frac{z}{2}\right)\right\}^{8} \text{ by (7)}$$

$$= \frac{1}{16}\theta_{2}\left(\frac{z}{2}\right)^{8}$$

$$\theta_{4}(2z)^{8}|_{[ST^{2}]_{4}} = \frac{1}{16}\theta_{2}\left(\frac{z}{2}\right)^{8}|_{[T^{2}]_{4}}$$

$$= \frac{1}{16}\theta_{2}\left(\frac{z}{2}\right)^{8} \text{ by (2)}$$

$$\theta_{4}(2z)^{8}|_{[ST^{2}S]_{4}} = \frac{1}{16}\theta_{2}\left(\frac{z}{2}\right)^{8}|_{[S]_{4}}$$

$$= \frac{1}{16}z^{-4}\{(-2iz)^{\frac{1}{2}}\theta_{4}(2z)\}^{8} \text{ by (5)}$$

$$= \theta_{4}(2z)^{8}.$$

Now we'll check the boundary conditions.

(i) $s = \infty$:

Since $\theta_2(z) = 2q_8(1+q+q^3+\cdots)$, $\theta_2(z)^8 = 2^8q(1+q+q^3+\cdots)^8$. Hence $\theta_2(z)^8$ has a simple zero at $s=\infty$. On the other hand, $\theta_4(2z)^8 = (\sum_{n\in\mathbb{Z}} (-1)^n q^{n^2})^8 = (1-2q+2q^4-2q^9+\cdots)^8$. Thus $\theta_4(2z)^8|_{s=\infty}=1$. (ii) s=0:

$$\theta_2(z)^8|_{s=0} = \lim_{z \to i\infty} \theta_2(z)^8|_{[S]_4}$$

$$= \lim_{z \to i\infty} \theta_4(z)^8 \text{ by (8)}$$

$$= 1$$

and

$$\theta_4(2z)^8|_{s=0} = \lim_{z \to i\infty} \theta_4(2z)^8|_{[S]_4}$$

$$= \lim_{z \to i\infty} \frac{1}{16} \theta_2 \left(\frac{z}{2}\right)^8 \quad \text{by (9)}$$

$$= \lim_{z \to i\infty} \frac{1}{16} \cdot 2^8 q (1 + q + q^3 + \cdots)^8$$

$$= 0, \quad \text{(a simple zero)}$$

Now, we'll prove the second part. From the well-known formula ([16], p.39) concerning the sum of orders of zeros of modular forms, it follows that

$$\nu_0(\theta_2(z)^8) = \nu_0(\theta_4(2z)^8) = 1.$$

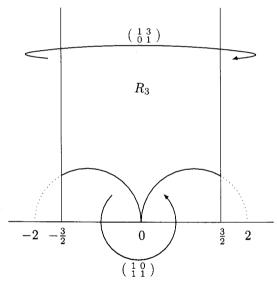
Hence $\theta_2(z)^8$ (resp. $\theta_4(2z)^8$) has no other zeros in $X_1(2)$ except at $s=\infty$ (resp. s=0). Therefore $[K(X_1(4)):\mathbb{C}(j_{1,2}(z))]=\nu_0(j_{1,2}(z))=1$, and so (ii) follows.

4. Modular function $j_{1,3}$

Now let us take $\Gamma = \pm \Gamma^1(3)$, and put $\gamma_1 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ and $\gamma_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Let R_3 be a fundamental region of $\Gamma^1(3)$. Then it is given by

$$R_3 = \bigcap_{i=1}^2 \operatorname{outside}(\gamma_i^{\pm 1})$$

with the following figure.



As is seen in the above figure $S_{\Gamma^1(3)} = \{\infty, 0\}$. Hence it follows from Theorem 3 that $\overline{\Gamma}^1(3)$ is generated by γ_1 and γ_2 . And we obtain the following theorem by (1).

Theorem 7. (i) $S_{\Gamma_1(3)}=\{\infty,0\}$. All cusps of $\Gamma_1(3)$ are regular ([11], [16]). (ii) $\overline{\Gamma}_1(3)$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$.

By Lemma 5 we have the following table of inequivalent cusps of $\Gamma_1(3)$:

Table 2. Cusps of $\Gamma_1(3)$

			- I(-
cusp	∞	0	
width	1	3	

Let $E_4(z)$ be the normalized Eisenstein series of weight 4 defined by

$$E_4(z) = \frac{1}{2\zeta(4)} \sum_{m,n \in \mathbb{Z}} \frac{1}{(mz+n)^4}, \ z \in \mathfrak{H}$$

where the summation runs over pairs of integers m, n not both zero, and $\zeta(s)$ denotes the Riemann zeta function for $s \in \mathbb{C}$. Then it has the following q-expansion ([9], p.111):

(10)
$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n, \ z \in \mathfrak{H}.$$

Put $j_{1,3}(z) = E_4(z)/E_4(3z)$.

Theorem 8. We have

- (i) $j_{1,3}(z) \in K(X_1(3))$ and $j_{1,3}(\infty) = 1$, $j_{1,3}(0) = 81$.
- (ii) $K(X_1(3)) = \mathbb{C}(j_{1,3}(z)).$

Proof. It is well known ([9], p.110 or [16], pp.32-33) that $E_4(z)$ is the modular form of weight 4 with respect to the full modular group $\Gamma(1)$. Hence E_4 satisfies $E_4(z+1)=E_4(z)$ and $E_4(-\frac{1}{z})=z^4E_4(z)$ for each $z\in\mathfrak{H}$. We observe that

$$\left(\begin{smallmatrix}3&0\\0&1\end{smallmatrix}\right)^{-1}\Gamma(1)\left(\begin{smallmatrix}3&0\\0&1\end{smallmatrix}\right)\cap\Gamma(1)=\Gamma_0(3)=\pm\Gamma_1(3).$$

This implies that $E_4(3z) \in M_4(\Gamma_1(3))$. Thus

$$j_{1,3}(z) = E_4(z)/E_4(3z) \in K(X_1(3)).$$

From (10) it follows that $j_{1,3}(\infty) = 1$. And

$$j_{1,3}(0) = \lim_{z \to i\infty} j_{1,3} \Big|_{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}$$

$$= \lim_{z \to i\infty} j_{1,3} \left(-\frac{1}{z} \right) = \frac{E_4 \left(-\frac{1}{z} \right)}{E_4 \left(-\frac{3}{z} \right)} = \frac{z^4 E_4(z)}{\left(\frac{z}{3} \right)^4 E_4 \left(\frac{z}{3} \right)}$$

$$= \lim_{z \to i\infty} 81 \cdot \frac{1 + 240(q + 9q^2 + \cdots)}{1 + 240(q_3 + 9q_3^2 + \cdots)} = 81.$$

Now we consider (ii). From the zero formula we get that $\nu_0(F)=\frac{4}{3}$ for any $F\in M_4(\Gamma_1(3))$. And $\nu_0(E_4(z))=\nu_0(E_4(3z))=\frac{4}{3}$ so that

(11)
$$\nu_0(j_{1,3}) \le \frac{4}{3}.$$

Since $j_{1,3}$ is not a constant function, we have

$$[K(X_1(3)): \mathbb{C}(j_{1,3})] = \nu_0(j_{1,3}),$$

which is an integer greater than or equal to 1. By (11) it must be 1. This proves (ii). \Box

5. Some remarks on Thompson series

For a modular function f, we call f normalized if its q-series is

$$\frac{1}{q} + 0 + a_1 q + a_2 q^2 + \cdots .$$

Lemma 9. The normalized generator of a genus zero function field is unique.

Proof. [7], Lemma 8. \Box

Let \mathfrak{F} be the set of functions f(z) satisfying the following conditions:

- (i) $f(z) \in K(X(\Gamma))$ for some discrete subgroup Γ of $SL_2(\mathbb{R})$ that contains $\Gamma_0(N)$ for some N.
- (ii) The genus of the curve $X(\Gamma)$ is 0 and its function field $K(X(\Gamma))$ is equal to $\mathbb{C}(f)$.
- (iii) In a neighborhood of ∞ , f(z) is expressed in the form

$$f(z) = \frac{1}{q} + \sum_{n=0}^{\infty} a_n q^n, \ a_n \in \mathbb{C}.$$

We say that a pair (G,ϕ) is a "moonshine" for a finite group G if ϕ is a function from G to $\mathfrak F$ and the mapping $\sigma \to a_n(\sigma)$ from G to $\mathbb C$ is a generalized character of G when $\phi_{\sigma}(z) = \frac{1}{q} + a_0(\sigma) + \sum_{n=1}^{\infty} a_n(\sigma)q^n$ for $\sigma \in G$. In particular, ϕ_{σ} is a class function of G.

Finding or constructing a "moonshine" (G, ϕ) for a given group G, however, involves some nontrivial work. It is because that for each element σ of G, we have to find a natural number N and a Fuchsian group Γ containing $\Gamma_0(N)$ in such a way that its function field $K(X(\Gamma))$ is equal to $\mathbb{C}(\phi_{\sigma})$ and the coefficients $a_n(\sigma)$ in the expansion of $\phi_{\sigma}(z)$ at ∞ induce generalized characters for all $n \geq 1$.

Let j be the modular invariant of $\Gamma(1)$ whose q-series is

(12)
$$j = q^{-1} + 744 + 196884 \ q + \dots = \sum_{r} c_r \ q^r.$$

Then j-744 is the normalized generator of $\Gamma(1)$. Let M be the monster simple group of order approximately 8×10^{53} . Thompson proposed that the coefficients in the q-series for j-744 be replaced by the representations of M so that we obtain a formal series

$$H_{-1} q^{-1} + 0 + H_1 q + H_2 q^2 + \cdots$$

in which the H_r are certain representations of M called head representations. H_r has degree c_r as in (12), for example, H_{-1} is the trivial representation (degree 1), while H_1 is the sum of this and the degree 196883 representation and H_2 is the sum of former two and the degree 21296876 representation ([18]). The following theorem conjectured by Thompson ([2]) and proved by Borcherds ([1]) shows that there exists a "moonshine" for the monster group M.

Theorem 10. The series

$$T_m = \frac{1}{q} + 0 + H_1(m)q + H_2(m)q^2 + \cdots$$

is the normalized generator of a genus zero function field arising from a group between $\Gamma_0(N)$ and its normalizer in $PSL_2(\mathbb{R})$, where m is an element of M and $H_r(m)$ is the character value of head representation H_r at m.

We will construct such a normalized generator (or the Hauptmodul) of the function field $K(X_1(N))$ (N=2,3) from the modular function $j_{1,N}$ (N=2,3) mentioned in Theorem 6 and Theorem 8.

$$\begin{split} \frac{2^8}{j_{1,2}} &= \frac{2^8 \ \theta_4(2z)^8}{\theta_2(z)^8} \\ &= \frac{2^8 (1 - 2q + 2q^4 - 2q^9 + \cdots)^8}{\{2q_8(1 + q + q^3 + \cdots)\}^8} \\ &= \frac{1}{q} - 24 + 276q - 2048q^2 + 11202q^3 - 49152q^4 + 184024q^5 + \cdots \,, \end{split}$$

which is in $q^{-1}\mathbb{Z}[[q]]$. Let $N(j_{1,2}) = \frac{2^8}{j_{1,2}} + 24$. In the case of the modular function $j_{1,3}$, we consider

$$\begin{split} \frac{240}{j_{1,3}-1} &= \frac{240 \ E_4(3z)}{E_4(z)-E_4(3z)} \\ &= \frac{240\{1+240(q^3+9q^6+28q^9+73q^{12}+\cdots)\}}{240(q+9q^2+27q^3+73q^4+126q^5+\cdots)} \\ &= \frac{1}{q}-9+54q-76q^2-243q^3+1188q^4-1384q^5+\cdots \,, \end{split}$$

which is also in $q^{-1}\mathbb{Z}[[q]]$. Let $N(j_{1,3}) = \frac{240}{j_{1,3}-1} + 9$. Then the above computations show that $N(j_{1,2})$ and $N(j_{1,3})$ are the normalized generators of $K(X_1(2))$ and $K(X_1(3))$, respectively. On the other hand by observing $\overline{\Gamma}_0(2) = \overline{\Gamma}_1(2)$ and $\overline{\Gamma}_0(3) = \overline{\Gamma}_1(3)$, we can get the normalized generators using η -functions (p.57 in [5] or Table 3 in [2]). Since the normalized generator is unique (Lemma 9) we get the following identities after adjusting the constant terms.

$$\frac{2^8 \ \theta_4(2z)^8}{\theta_2(z)^8} = \frac{\eta(z)^{24}}{\eta(2z)^{24}}$$

and

$$\frac{240\ E_4(3z)}{E_4(z)-E_4(3z)} = \frac{\eta(z)^{12}}{\eta(3z)^{12}} + 3.$$

By Table 3 in [2] and Theorem 10, $N(j_{1,2})$ (resp. $N(j_{1,3})$) corresponds to the Thompson series of type 2B (resp. type 3B). By Theorem 6-(ii) and 8-(ii) we have the following tables:

Table 3. Cusp values of $N(j_{1,2})$

<u>-</u>			(0 -
s	∞	0	
$N(j_{1,2})(s)$	∞	24	

Table 4. Cusp values of $N(j_{1,3})$

s	∞	0
$N(j_{1,3})(s)$	∞	12

Lemma 11. Let N be a positive integer such that the modular curve $X_1(N)$ is of genus 0. Let t be an element of $K(X_1(N))$ for which (i) $K(X_1(N)) = \mathbb{C}(t)$ and (ii) t has no poles except for a simple pole at one cusp s. Let $f \in K(X_1(N))$. If f has a pole of order n only at s, then f can be written as a polynomial in t of degree n.

Proof. Take $\gamma \in SL_2(\mathbb{Z})$ such that $\gamma \infty = s$. Let h be the width of s. Then we have

$$t|_{\gamma} = \frac{1}{c} \; \frac{1}{q_b} + \cdots$$

and

$$f|_{\gamma} = b_n \; \frac{1}{q_b^n} + \cdots$$

for some $c \neq 0$ and $b_n \neq 0$. Thus

$$(f-b_n(ct)^n)|_{\gamma}=\lambda_{n-1}\ \frac{1}{q_h^{n-1}}+\cdots$$

for some λ_{n-1} . And

$$(f - b_n(ct)^n - \lambda_{n-1}(ct)^{n-1})|_{\gamma} = \lambda_{n-2} \frac{1}{q_{\perp}^{n-2}} + \cdots$$

for some λ_{n-2} . In this way we can choose $\lambda_i \in \mathbb{C}$ such that

$$(f - b_n(ct)^n - \lambda_{n-1}(ct)^{n-1} - \dots - \lambda_1(ct))|_{\gamma} \in \mathbb{C}[[q_n]].$$

Let $g = f - b_n(ct)^n - \lambda_{n-1}(ct)^{n-1} - \cdots - \lambda_1(ct)$. Then g has no poles in \mathfrak{H}^* , and so g must be a constant, say λ_0 . Therefore we end up with $f = b_n c^n t^n + \lambda_{n-1} c^{n-1} t^{n-1} + \cdots + \lambda_1 ct + \lambda_0$, as desired.

Theorem 12. Let d be a square free positive integer and t be the Hauptmodul $N(j_{1,N}), (N=2,3)$. For $\tau \in \mathbb{Q}(\sqrt{-d}) \cap \mathfrak{H}, \ t(\tau)$ is an algebraic integer.

Proof. Let $j(z) = \frac{1}{q} + 744 + 196884q + \cdots$. It is well-known that $j(\tau)$ is an algebraic integer for $\tau \in \mathbb{Q}(\sqrt{-d}) \cap \mathfrak{H}$ ([10], [16]). For algebraic proofs, see [3], [12], [15] and [17]. Now, we view j as a function on the modular curve $X_1(N)$. Let s be a cusp of $\Gamma_1(N)$ other than ∞ , whose width is h_s . Then j has a pole

of order h_s at the cusp s. On the other hand, t(z) - t(s) has a simple zero at s. Thus

$$j imes \prod_{s \in S_{\Gamma_1(N)} \setminus \{\infty\}} (t(z) - t(s))^{h_s}$$

has a pole only at ∞ whose degree is 3 if N=2, and 4 if N=3. And so by Lemma 11, it is a monic polynomial in t of degree 3 or 4 according as N=2 or 3, which we denote by f(t). With the aid of Table 1 \sim 4, we can compute the product part in the above more explicitly, that is,

$$\prod_{s \in S_{\Gamma_1(N)} \setminus \{\infty\}} (t(z) - t(s))^{h_s} = \begin{cases} (t - 24)^2, & \text{if } N = 2\\ (t - 12)^3, & \text{if } N = 3. \end{cases}$$

Since j and t have integer coefficients in the q-expansions, f(t) is a monic polynomial in $\mathbb{Z}[t]$ of degree 3 or 4 according as N=2 or 3. This claims that $t(\tau)$ is integral over $\mathbb{Z}[j(\tau)]$. Therefore $t(\tau)$ is integral over \mathbb{Z} for $\tau \in \mathbb{Q}(\sqrt{-d}) \cap \mathfrak{H}$.

References

- R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405–444.
- [2] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308-339.
- [3] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
- [4] C. R. Ferenbaugh, The genus-zero problem for n|h-type groups, Duke Math. J. 72 (1993), no. 1, 31-63.
- [5] K. Harada, Moonshine of Finite Groups, Ohio State University, (Lecture Note).
- [6] C. H. Kim and J. K. Koo, On the genus of some modular curve of level N, Bull. Austral. Math. Soc. 54 (1996), no. 2, 291–297.
- [7] _____, Arithmetic of the modular function $j_{1,4}$, Acta Arith. 84 (1998), no. 2, 129–143.
- [8] _____, Arithmetic of the modular function $j_{1,8}$, Ramanujan J. 4 (2000), no. 3, 317–338.
- [9] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1984.
- [10] S. Lang, Elliptic Functions, Graduate Texts in Mathematics, 112. Springer-Verlag, New York, 1987.
- [11] T. Miyake, Modular Forms, Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989.
- [12] A. Néron, Modeles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. No. 21 (1964), 5-128.
- [13] R. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977.
- [14] B. Schoeneberg, Elliptic modular functions: an introduction, Translated from the German by J. R. Smart and E. A. Schwandt. Die Grundlehren der mathematischen Wissenschaften, Band 203. Springer-Verlag, New York-Heidelberg, 1974.
- [15] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517.

- [16] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971.
- [17] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151. Springer-Verlag, New York, 1994.
- [18] J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), no. 3, 352–353.

CHANG HEON KIM
DEPARTMENT OF MATHEMATICS
SEOUL WOMEN'S UNIVERSITY
SEOUL 139-774, KOREA
E-mail address: chkim@swu.ac.kr

JA KYUNG KOO
KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF MATHEMATICS
TAEJON 305-701, KOREA
E-mail address: jkkoo@math.kaist.ac.kr