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RECTIFIABILITY PROPERTIES OF VARIFOLDS IN 2

PEIBIAO ZHAO' AND XIAOPING YANG?

ABSTRACT. We prove the following theorem: Given a Varifold V in {2,

with the property that 0 < lim,_.¢ %@ < oo for py a.ex € SptV,
then V is rectifiable.

1. Introduction

The study of the tangential properties and rectifiable properties of measures
has only a short but interesting history. It has been an active field over the past
five decades. Much geometric information is carried by tangent measures of a
measure. Especially if such tangent measures or measures are rectifiable, one
can obtain some interesting further regularity results with respect to them. D.
Preiss in [21] investigated to what extent the regular behavior of the measure of
balls determine the tangential and rectifiability properties of measures. In other
words, he compared the general measures with those of balls, namely, Hausdorff
measures or the special measures acted on balls. He used the fundamental
works of A. S. Besicovitch [5], [6] and the technique of H. Federer [9] to study
the Geometry of measures in R", for instance, Distribution, Rectifiability, and
Densities.

It is well known that a measure u is m—rectifiable if it satisfies condition
(BP)(one can see [21] for details). Up to now one knew that Case a: m = 1,
n = 2 [6]; Case b: m = 1, n arbitrary [18]. On the other hand, when m > 2,
there is not any comparable statement being hold. Up to 1987, the works of D.
Preiss was published, then these questions just as above (m > 2) are solved, but
all these results were considered in Euclidean spaces. It is natural to ask how to
determine the tangential and rectifiability properties of a measure when m > 2
under the general norm spaces. In this paper, we only consider Case c: m =2
and choose the model problem space in I3, which is the concrete space R? with
sup norm. The grounds, we study this problem in 2, are the following two

o

folds. The first fold is that many things associated with this problem can be
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computed directly; the second fold is the fact that any metric space is isometric
to some subset of I, [10]. So the first interesting thing related to this problem
is the case when m = 2. For the finite dimensional normed vector spaces,
We think that the problem proposed in this paper may be true, and that the
corresponding result will be a stronger one. When m # 2, we will introduce
a new method to study it in the next paper “A Marstrand Theorem for Cube
in R% with respect to Varifolds” [26]. Furthermore, we consider a Varifold as
a Radon measure defined on Grassmannian G(3,2). Because Varifolds vanish
the orientation and provide the measure properties, many problems related to
stationary of currents or measures may be considered there.

On the other hand, the rectifiability of a Radon measure with positive fi-
nite density in Euclidean space, was a central problem in Geometric Measure
Theory for fifty years. Of course this problem was resolved by D. Preiss but
it has been a well known open problem in Non-Euclidean spaces. Just as this
we choose space I3 as a model space to study the rectifiability of Varifolds or
general Radon measures. For Non-Euclidean spaces, L. Ambrosio and B. Kirch-
heim recently [3], [4] study the currents in metric spaces and rectifiable sets in
metric and Banach spaces, respectively. Although they solved the generalized
Plateau problem by using currents techniques in some Non-Euclidean space,
these problems are closely related to the orientation. So, a natural problem
is, for the non-orientation surfaces, for instance, Varifolds, whether the similar
Plateau problem can be solved by virtue of the properties of Varifolds, and by
the way, whether there is any chance to find the further interesting geometric
and analysis properties of Varifolds.

Motivated by these statements and so on, we think that the materials se-
lected here are of momentous current significance.

Throughout the paper, we take the notations and terminologies adopted by
D. Preiss in [21]. For the sake of convenience, we will introduce some known
concepts and results without proofs in the following sections.

We now can sketch this paper and consider the problem along the following
procedure.

Section 2 gives the necessary preliminaries and some results. Some important
results will considered in Section 3, and we will give the proofs of these results.
Section 4 is devoted to some examples and Section 5 is devoted to the short
conclusion about this subjects . On the other hand, we pose the train of thought
of study adopted in this paper as follows.

(1) D. Preiss’s results [21](for Radon measures)

Let i be a Radon measure on R™ with property

0 < 1im AEBr (@)
r-—0 rm

< o0

for p a.e.x € Sptu, then u is rectifiable.
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(2) Well known results (for Hausdorff measures)

Given a metric space M with metric d, let H!' denote Hausdorff measures
where the diameter of the covering bodies is taken with respect to d. Suppose
M has the property

o HE(BG,T)
r—0  a(m)rm
for H' a.e. points x € M, then M is rectifiable in the sense that H7* almost

all of M is contained in countably many Lipschitz images of subsets of an
m-dimensional Euclidean space.

=1

From this result we know Kirchheim’s result [3], in briefly, that Rectifia-
bility implies density is tenable in metric spaces

(3) A. Lorent’s result [13](for Radon measures)

Assume that p measures [2,. If 4 is a locally 2-uniform measure in {3, then
it is rectifiable.

In this paper we wish to study the rectfiabilities of a measure in I3, by using
density condition replacing the uniform measure condition, that is, we prove
the following measure theorem

(4) Main Theorem (for Radon measures and Varifolds)

Given a Varifold V on [2, with the property that

0 < lim 2V (& @)
r—0 T

for py a.e.x € SptV, then V is rectifiable.

< 00

2. Preliminaries

Let R™ be the set of real valued n— vectors, e, ez, e3 be orthonormal vectors
in R® and ej3 = —e; for j € {1,2,3}. Let C, be the open cube of radius r
centered on z, where sides are perpendicular to the orthonormal vectors, and S
be a finite dimensional normed vector space. We denote by | - || £ the Euclidean
norm, and by || - || the sup norm. So that ||z]] = max{|e;1 - zl, |es - 2|, |es - x|}
Assume that 12, denotes the space with the sup norm. G(m,n) denotes the
collection of all the sets of m-dimensional linear subspaces of R™. We also
denote by cl(A) = {x € R" : there exists z, € A s.t.z, — x asn — oo for A C
R™} the closure of A, and A = cl(A)Ncl(R™\ A) for any A C R" the topological
boundary of A. We again introduce some necessary notations here. Let Tj(T) be
the side of cl(C.(0)) perpendicular to e; and which intersects the line < e; >

for j =1,2,...,6, and SJ(-O) = Uronj(T) for j =1,2,...,6. We also denote by
$\% = 5 for j =1,2,...,6, and S = SV ¢ for j =1,2,...,6.
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For y € Sptu, let u, denote the induced measure of u onto 8C,(y), i.e., for
any A C I3, we have

W(A) = / (00 ) N AL

where Cy.(z) = {2 : |z — z|| < r}. By using the symmetry of the pyramid we
easily know that

pr (857 NOC, (2)) = pr (8575 N T ().

Let fY(r) = p(8C(y) N S®), if y € G, it is not hard to show that
fi(y) is a Lipschitz non-decreasing function. At the same time, we denote by
Az, s,t) = Cy(z)\cl(Cs(z)). By using Definition of the induced measure, we
can write down y, as follows

w(SW N Aly,s — h,s +h))
2h

for all such s > 0 and for any y € Spty if this limit does exist. We denote by
L® the set of points s > 0 for which the derivatives of f*/, W fs(y) all exist
at s. Let X(z,v,7) = {y € R®: |[P,.(y— )| < s|P<ys>(y— )|} for any z € R3,
v € §2, s > 0, where P, : R® — 7 is the orthogonal projection onto 7 for any
linear subspace 7 C R3. Furthermore, we denote by G = {z € Sptu : V6 >
0,9 € S2,limsup,_,q &C’“—(%&M > 0} the set of points with positive cone
density. At the same time, we also denote by G = {x € G : lim,_,g ’—‘@T(fi@ =
0} the set of density points of G, in G.

In this paper we say a measure over R"™ is a map u of the family of all subsets
of R™ into [0,00] s.t.

£(s) = lim = us(S5Y N C.(v))

u(A) =inf{ Y u(B); AC R"}

BeF

for every set A C R™ and F is a countable cover of A by Borel subsets of R™.
According to the theory of general Varifolds [1], [23], one knows that general
Varifolds in U (U open in R™) are simply Radon measures on G, (U) = {(z, S) :
xz € U,S C R™} where S is an m-dimensional subspace of R™.

Definition 2.1. (Varifold) An m-Varifold V, briefly speaking, means a Radon
measure on G, (R™).

Given an such m-Varifold V on U (U C R"), there corresponds a Radon
measure y = uy on U(called the weight of V') defined by

wA) =V(z~H(4),ACU

where 7 is the projection (z,S) — z of G,,(U) onto U.
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Definition 2.2. (Rectifiable Sets) A set U C R™ is called m—rectifiable if
there exist a finite or countable set J and Lipschitz maps f;,j € J from R™ to
R"™ such that H™(E'\ | f;(E;)) =0, where E; C R™, for j € J.

jeJ

Definition 2.3. (Rectifiable Measures) The measure x in U C R™ is said to be
m-rectifiable if it is absolutely continuous with respect to H™ and there exists
an m—rectifiable Borel set E C U with u(E \ E) = 0.

Definition 2.4. (m-rectifiable Varifolds) Given an m—Varifold V, we associ-
ated a Radon measure on U, uy, by setting uy = V(771(4)),4A C U. Given
an m—rectifiable measure py, we can associate an m—rectifiable Varifold p
defining by u(B) = pv({z : (z,T:) € B}) for B C U x G(n,m), where T, is
the approximate tangent plane at x.

Similarly, the analogues of m-Varifolds and m—rectifiable Varifolds in I3,

can be defined as above. It is well known that B. Kirchheim [5] studied the k-
k

dimensional density lim,_,q %—:ﬁr(’”ﬁ of rectifiable sets with finite measure.
L. Ambrosio and B. Kirchheim [4] studied the rectifiable sets in metric spaces
and Banach spaces. In [4], the authors posed the inverse problem in metric
spaces, that is, the following inverse problem: whether equality
i H*(E N B.(x))

1i

=1
10 wkrk

for H*-a.e.x € E implies the so-called rectifiability for a general metric space
E. Up to now we know that this problem is open.

In this paper we take the metric space E is [3,. In fact we only want to
use the behavior of I3 preserving the Lipschitz constant. At the same time,
Varifolds as measures defined on G,,,(U) have a special structure Theorem (see
Lemma 2.1 below).

Lemma 2.1. Let V be an m-Varifold on U (U open in R™). Then for py-
a.e.x € U, there is a Radon measure nf, on G(n,m) such that, for any contin-
uous function B(s) on G(n,m),

J. B(S)dV (y,S)
(=) o Gm(Bp(x))
/G(n,m) B(S)dny(5) = 1;?01 py (By(z))

Furthermore for any Borel set A C U, if 3 > 0, then we arrive at

To)= 52 z).
L rwves)= [ [ s )

Proof. By virtue of the proof offered in [23], it is easy to derive that Lemma
2.4 is tenable in 3. a

For the needs of latter part of this paper, we now give out Definition of a
locally 2-uniform measure as follows.
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Definition 2.5. A locally 2-uniform measure u is a measure with the property
that for every z € Sptu, r € (0,1) there holds u(C,(x)) = 4r?, where if 7 > 0
is arbitrary then the words “locally” will be omitted, namely the 2-uniform
measure.

3. Main theorems and proofs

In this section we first study the properties of measures with respect to
Problem 4 and then prove the useful Theorem 3.1 which will play an important
role in developing D. Preiss’s theory. For the later use, we state some Lemmas
(see [10, 13]) as follows.

Lemma 3.1. ([13]) Given a Radon measure p on I3, with property that

0<limﬁ(—cw<oo
r—0 T

for p a.e.x € Sptu. Let p, be the induced measure on 0C,.(x), and fi(z)(r) =

1(8) N 8C,(x)), then £ is a monotone non-decreasing Lipschitz map and
F(ry> 0 for allr € (0,1) N L&,

Lemma 3.2. ([10]) Assume that Y* is the conjugate space of Y. Ifh : X - Y
s a Lipschitzian map of metric spaces, A C X,0 < k < o0 and 0 < m < o0,
then one arrives at the following formula

m a(k)a(m)

alk+m) R (A)

/ H*(AN R~ Y z})dH™(z) < (Liph)
provided either {z : H*(AN h~1{z}) > 0} is the union of a countable family of
sets with finite H™ measure, orY is boundedly compact.

Lemma 3.3. ([10]) If f : R™ — R™ is a Lipschitzian, s is a positive integer,
and T is a purely unrectifiable Borel subset of R™, then we know that

dim imDf(z) < s
for L™ almost all z in f~1(T).

Remark 3.1. For Definition of a purely unrectifiable set, one can see {10], [11],
[12] for details. On the other hand, We can also prove Lemma 3.3 by using the
method offered in [22]. We omit the special proving procedure here. Of course,
we here refer to [10] for details.

Definition 3.1. Let (E, d) be a metric space. If there exists a sequence (¢;) C
Lipi(E) such that d(z,y) = sup;cn |pi(z) — @i(y)| for Va,y € E, then E is
said to be weakly separable where Lip;(E) denotes the collection of Lipschitz
functions with Lipschitz constant less than 1. A dual Banach space Y = E* is
said to be w*-separable if E is separable.
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Lemma 3.4. Let Y be a w*— separable dual space. Assume that A CY is
w*— compact and h : A — R is Lipschitz and w*— continuous. Thus there is a
uniformly w*— continuous map h: Y — R such that h|a = h, sup |h| = sup |h|,
and Lip(h) = Lip(h).

Proof. By Kirszbraun’s theorem or [10], one can obtain Lemma 3.4. a

Theorem 3.1. Given a Radon measure i on I3, with property
0 < lm @) _
r—0 r
for  a.e.x € Sptu. Let p, be the induced measure on 9C,.(z), and let W be an
rectifiable and H™ measurable subset of R™, h: W — I3 is a Lipschitz map,
A>0 and
R =101 n{zeSpty: p.(h"Hx}) > A}
then R is rectifiable.

Proof. Since W is an (H™,m) rectifiable and measurable subset of R™, then
it is not hard to know that there exist compact subsets Ky, Ko,... of R™ and
Lipschitz maps @1, @2, ... of R™ into R™ such that ¢(K}), o(Ks), ¢(Ks),. ..
are disjoint subsets of W with H™[W ~ U2, ¢;(K;)] = 0. At the same time,
one also knows that for each positive integer i, the following inequalities are
tenable:

Lip(ips) < A, Lip[(p3l Ki) 711 < A Aol < W, Dgi(a)] < Al

for a € K;, v € R™. Just as these statements, we can consider that W is
compact, then we can say that R is a Borel set according to [10] or [23].
On the other hand, we can extend h to a Lipschitz map h:R™ — 13, and
take V = W N {z : dim imDh(z) < 2}. Since R is Borel set, we take m =
3,k = 1 in Lemma 3.2, then we can choose a countably 2-rectifiable Borel
subset R of 13, such that R\ R is purely unrectifiable. In other words, we
should know that £3(A~1(R|R)\ V) = 0 from Lemma 3.3. That is to say that
1 (8C, NC, NA™1{z}\ V) = 0 for p a.e.z € R\ 'R in terms of Lemma 3.2 and
the conditions of Theorem 3.1. Then one arrives at u,(0C,. Nh™YH(z)NV) > A
forpae z € R\’f{ In fact, if W is bounded compact, A C W,and h: W — Y
is a Lipschitz map of metric spaces. If 4 is y—measurable and u(A) < oo, then
pr(0C(z) N AN R~ Ha}) is p-measurable. Namely, C,(z) N AN A~ {z} is
ur-measurable for p-a.e.x.

Case 1. For all 0 < p < r, if 4, € MBV(A), then we can prove Theorem
3.1 as follows.

For any ), ¢ > 0, we can define Z,s as the collection of all points p € (0,1)
such that

1o(0C, N ANR ™ {z}) > A = p,(Bss(z) \ {z}) <

for any z € K C Sptu, where K is a compact set.

A
3



38 PEIBIAO ZHAO AND XIAOPING YANG

For the sake of convenience, we denote by R s the following set:
Ras ={z € K C Sptp: p,(8C,(x) N ANk~ H{z}) > A}

for any p € (0,1). We notice that R = Uy s50R s, hence it suffices to prove
that Rys is countably H2—rectifiable.

In fact, we only derive for p € (0,7) that p, is a Lipschitz function w.r.t. p,
and by a covering argument one can prove this conclusion immediately. Now
denoting by O any subset of Rys with diameter less than §, we now check that
there exists a constant c(k) such that

k 1
M5+ Hlo- s
whenever z,4 € O, p,(0C, N h~*{z}) > A and u,(8C, NA~1{£}) > A, and
p,p € (0,7). By the calculus of representation theory, we let in short d =
d(z,£) < 6 and define ¢(y) = d(y,z) in By(z), and ¢(y) = 0 in E \ Baoy(z)
and |¢| = d, Lip(¢) < %. Since we can always stand for u.(¢) as the integral
J5 ¢dpr, then we know that

dz, %) <

A
lur(@)(W)] = | d(y)du,| < d du, < §d‘
Ba(z)\{z} Ba\{z}

On the other hand, we can derive by a direct computation that

Ad
pi(9) > / $dps = d( +/ ddus) > Ad — 3
dBy(x) {#} JOBa(x)\{#}

At the same time, we can think measure u, as a linear functional by Riesz
expression theorem, and then we know that Theorem 3.1 holds by also using
the covering argument, Lemma 3.1 and Theorem 7.3 in [3].

Case 2. In general case, Case 1 is not tenable at this very moment. In this
setting for given any ¢ > 0, let Z be a countable, dense subset of the set of all
linear symmetric automorphisms f of I3, with |det(f)| < e or || A2 f|| < €, where
A denotes the exterior product. We consider the automorphism f € Z and any
positive integers 4, j with the following properties, i.e., the subset U(f,4,J) of
V consisting of all points & s.t. ||f~* o Dh(z)|| <1—i! and

|f " [h(y) ~ (@)~ < y — @, Dh(z) >] < iy — =

for any y € B(z,j1).
Now we consider the special subset with E C U(f,4,7) and diamF <
then we derive, by using the statements above, that

(Floh)y—(floh)z|<|<y—u,f oDh(z)>|+i y—a|
SA-i Dy —al+ity—af = |y - 2|

1
j?

whenever z,y € E, that is to say, Lip(f "1 oh|E) < 1. By Lemma 3.2 and Area
formula [12], it is not hard to derive that for any subset A C W, there holds
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w(h(A)) < C|| Az h||u(A), where C is a constant. From these statements we
see that the following inequalities are tenable.

/ e (0C, N E 1 b o)) du(e)
- / e [0C, N E(f 0 by~ (@)} du(z)

< Coll A 1] / 1o (8C, N E N (F 0 h){})du(y)
< C1L3E)

where Cy,C; are two constants. The last inequality is tenable because of the
hypotheses of Theorem. On the other hand, V' is the union of sets U(f,4,7) and
we can represent V as the union of a countable disjointed family F consisting
of £3 measurable sets F for which

/ H(E N h~Hz})dH? (z) < ceL?(E)

where c is a constant. Next we are going to considering the summation over F
and see that

MHARA\R) < ce3(V).

This implies that H2(R \ ﬁ) = 0. In other words, we prove the rectifiability of
8C,(z) N Spty w.r.t. p, for arbitrary real number » > 0.

By synthesizing the relevant results of Case 1 and Case 2, the remanent work
for us is to prove the rectifiability of SptuNC,.. In fact, we represent C,.N Sptu
by the bundle with the analogue of a Grassmann. That is to say, we have the

following expression |J 6C,NSptu, and then rewrite down the measure y as
0<p<r

the product measure y, x v|jg 4 for ¢ > 0, where measure v is defined on [0, ].
Since interval [0, t] can be regarded as a continuum by using the results in {20],
one arrives at that it has a finite H!— measure consisting of a countable union
of rectifiable curves. From the views of Hausdorff measure definition and the
theorem posed in [23], one can obtain this conclusion. In other words, measure
4 can be regarded as the measure p, x H!. It is immediately that Theorem
3.1 is tenable. This completes the proof of Theorem 3.1. d

Remark 3.2. Theorem 3.1 shows that a Radon measure u, needless to be a
Varifold, satisfying the conditions offered in Theorem 3.1, possess the rectifi-
ability. It is obvious that Theorem 3.1 is certainly tenable for Varifolds. By
virtue of this special properties of Varifolds, we think about that the proof of
Theorem 3.1 for Varifolds must be being in another way. With regard to the
knowledge of Varifolds, one can refer to [1] for details. We can now write down
an interesting result for Varifolds as follows.
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Theorem 3.2. Given a 2-Varifold V defined on G2(I2,) with property
0 < Tim 2(C-(@) ;‘(x)) <0
T

r—0

for uy a.ex € Sptuy, where uy=py is a Radon measure on 12, (called the
weight of V) defined by u(A) = V(n~1(A)),A C U C13,, and 7 is the projec-
tion of Go(U) onto U. Then u is rectifiable.

Proof. Let G(3,2) denote the collection of all 2-dimensional subspaces of R3.
For a subset A C I3, we define G»2(A4) = A x G(3,2). Considering B C G2(4),
then for a 2-Varifold V', we have the following convention:

wA) = py (A)=V(x~(4)).

We now consider the unit ball C;(0) centered at region in I3,. It is not hard
to prove that C.(z) = {z + ry : y € C1(0)}. Notice that the linearity of a
projection 7 : (z,8) +— z of G2(A) onto A, where S € G(3,2). We can
rewrite 7~ 1(C,(z)) by {(z +ry,S) : (y,S) € B} for arbitrary S € G(3,2). In
other words, we know that

wlCrlz)) _V(nH(Cr(w) _ V{(z +1y,9)|(y, ) € BY) N Ga(n~ (Cr(x)))

2 r2 r2

Then we have the formula as follows

w(Cr(x -
L R )]
Since the limit
i MO
r—0 r

exists, we see that the limit
1irr(1) Ve r(m™HCr(z)))
r—

exists simultaneously. On the other hand, by virtue of Lemma 38.4 in [23], one

arrives at for any Borel set A C U C I3, there exists a Radon measure n‘(f ) on

G(3,2) s.t. for any continuous function 8 > 0 on G(3,2) the following formula

is tenable.
dv(z, S $)dn®(S)d
/szﬁ” (2,8) = //Gm) i (8)duy (z).

Since the arbitrary of 3 > 0 on G(3,2) and use the hypothesis of Theorem 3.2,
that is, the limit lim, ¢ ”—"%—gﬁ is finite, then we know that there exist some
positive number # and T € G(3,2) such that

lim Ve, = = o0\ (T).

By using Definition with respect to tangent spaces in [23], we see that Theorem
3.2 is tenable. This completes the proof of Theorem 3.2. a
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Remark 3.3. We note that the proof of Theorem 3.2 is much easier than that
of Theorem 3.1. We think that Varifold itself has the associated with the
“bundle structure” along the subset offered in the research setting. The “bundle
structure” replacing the necessary tangent spaces plays an important role in
the way of rectifiability criterion w.r.t. measures or sets. Just as this we say
that one will obtain some fine and deep results for Varifolds under the same
conditions as above. In fact, Theorem 3.2 is only one of all possible results.
It is well known that the description of rectifiability of a measure by virtue of
the approaches of densities in higher dimension depends mainly on the locally
version of Besicovith-Federer Projection Theorem [9], or on the variants of this
Projection Theorem [10]. But in this setting, we have not any extant projection
theorem in [3, for us being used to derive our main problem. On the other hand,
[14] shows that one can only consider the case of 0 < s < 2 with respect to
Criterions of the rectifiability of a measure in terms of s—density.

In addition, for Varifolds, since we adopt a geometric analysis method, and
also use the induced measure by p which depends on the structure and dimen-
sion of spaces, to derive the rectifiability of Varifolds, and notice that the paper
[14], it is natural to choose integer “2” not arbitrary number “s” to study this
classical problem. For the case of arbitrary number “s”, we will study it in our
next paper “A Marstrand Theorem for Cube in R? with respect to Varifolds ”
[26]. In that paper we first follow [7] to construct the projection theorem and
then adopt the idea of tangent measures to derive the rectifiability of a Radon
measure u, in particular, to derive the rectifiability of Varifolds.

Finally, we can replace space I3, by R® because of equivalence up to Theorem
3.2. For the sake of convenience of representing cube in the proof of Theorem
3.2, we still adopt the space I3, as our model space. Of cause, we can adopt the
space R? replacing I3, in sense of equivalence. Just as being out of considering
for consistency, we still adopt I3, as our model problem space.

Remark 3.4. By using the definition of contact manifolds we see that the so-
called Varifolds are just the corresponding analogue in general set setting. From
these criterion we think that many approaches posed in contact manifolds will
be translated into our setting for studying the properties of Varifolds.

Theorem 3.3. Given a 2-rectifiable Varifold V defined on Ga(13,) with prop-
erty

0 < tim BAGE)
r—0 T

for uy a.e.x € Sptuy. Then u is rectifiable.

Proof. By the proof of Theorem 3.2 we can write measure y as u = py = H"|6.
Then we see by a direct derivation that there exists a approximate tangent space
T, A satisfying the relationship 11.4 in [23]. Thus, by virtue of Theorem 38.3
in 23], it is not hard to find that Theorem 3.3 is tenable. O
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Remark 3.5. In fact, a measure p = H"™| 60 implies that the studied set has the
natural tangent bundle structure. That is to say, we can use the Hausdorff
measure to replace the requirement of the tangency of a set at point 2. Then,
a measure or a set will possess the rectifiability because of the “flatness”([3])
of Hausdorff measures. On the other hand, it is well known that the tangent
measure will possess the “flatness” of a measure which is used to promulgate
the rectifiability of measures. Similarly, we can study the rectifiability of sets
with the same techniques. With regard to Theorem 3.1 or Theorem 3.2, if we
modify the conditions proposed as above by replacing it with density property,
then we can prove the following;

Theorem 3.4. Let p be a Radon measure in U. We define the so-called 2-
carrying set as follows:

seta(n)=U N {zx € Sptu : ©2(u,z) < oo}
Then ulseta () = O (s, Y seta(p).

Proof. By using the proof of Theorem 3.1, we know that the 2-carrying set
seto(p) of p is rectifiable. Then, one arrives at u|seta(p) is absolutely contin-
uous with respect to H? by virtue of a covering argument. Now, we consider
the Borel set as follows for each j: S;=seta(u) N {z € Sptp : O*(u,z) > %}
and we observe that H?|S; is a Radon measure and that p|S; is absolutely
continuous with respect to H?|S;. According to Theorem 2.9.1 and Theorem
2.8.18 in [10] we have that u|S; = h;(z)H?|S; with property

(SN Ca)

hi(@) = lim 5 (5 7 ¢ ()
for H? a.e. z € S;. On the other hand, S; is 2-rectifiable, Borel, and have
locally finite H? measures so that ©2(H2|S;,z) = 1 for H? a.e.x € S;(see [10]),
then we know that h;(z) = ©2(u|S;,z) for H? a.e. z € S;. We refer to [10]
again and derive that ©%(u|S;,z) = ©%(u,z) for H? a.e.x € S;. Finally it is
not hard to see that p|seta(u) = ©2(u, )H?|set2(p). This ends the proof of
Theorem 3.4. d

Remark 3.6. It is well known that Theorem 3.4 is tenable for Varifolds. Of
course it is also tenable for 2-rectifiable Varifolds. In fact, for Theorem 3.4,
T. D. Pauw in [20] studied the same problem but the theorem posed by T. D.
Pauw needs the hypothesis with rectifiability of 2-carrying set seta(u).

4. Examples

Example 4.1. We consider 1-set (see [8] for details) E. Assume that 1-set E
i

is regular, i.e., lim, g H(#r;fﬂn = 1. By using the summation of measures

and the property hypothesis of Theorem 3.1 we can derive that the Radon

measure u = H! for a.e.x € E. In other words, we show that u is rectifiable.

Furthermore, we can consider the continuum E C R. By virtue of Theorem
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3.2 and [20], we see that a Varifold V in this setting is rectifiable, i.e., V is a
1-rectifiable Varifold.

Example 4.2. For convenience we continue to consider the p— measurable
set E C R. In this setting: (I3.,||-|) = (R,| - ||g) by Definition. Let f be
an Lebesgue-integrable function in R, zqg € R. We observe that for integral
F(z) = [; f(t)dt, the following relationship

F(zo +71) — F(zo)

F'(z0) = lim
70

= f(2o)

is tenable.

We denote by u(E) = [, f(t)dt. Then,

- w(wo,mo+ 1)) 1 [TFT o
by iy S0 = Fiwo)
for a.e.xp € U{closed interval U C R).

Now, we take function f(z) =1 if z € E; Otherwise f(z) =0if x € R\ E.
Thus we have lim,_,q "—(ng—z"ﬂh = 1 for a.e. 7o € E. In other words, if F
is pi— measurable set, then E is rectifiable from Theorem 5.2 and Theorem 5.6
in [21].

Example 4.3. Let © C 2, be fixed open set, and C be a class of closed subsets
of Q. Take E C 9, and consider a Lipschitz mapping f from Q to itself. We
require that f(E) € C whenever E € C, W = Wy = {z € Q; f(z) # z} and
Wy U f(Wy) C B for some ball Cr.(xz) CC  of I2,. Roughly speaking, we can
consider the following functional on C

J(B) = /E b(2)duy ()

for 2-Varifolds V, where 8 is continuous on 2 and 1 < § < C everywhere. We
would like to find E € C s.t. J(E) =S, where & = inf{J(F; F € C)}.

The approach would be to take a minimizing sequence, i.e., a sequence {Ey}
in C, with limg_,o, J(Ex) = S. It is obvious that if one takes Varifolds to be
Curvature Varifolds, then the functional must have some interesting geomet-
ric properties. All these subjects will be studied in our next paper(in prepara-
tion) “Some Properties of Curvature Varifolds”.

5. Conclusion

We have given a family of new sufficient conditions for Radon meagure and
Varifolds being rectifiability. For instance, by using the corresponding sufficient
conditions, one studied the rectifiability of measure or sets. In particular, one
can use these conditions to prove the rectifiable property of Varifolds. Of
important thing is that they can be applied to design the smoothness of sets
with low dimension. In addition, the methods of this paper may be applied to
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some other cases such as the measures or Varifolds given in Refs.[2], [11], [13],
[15], [16], [19], [24], [25] and so on.
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