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A Method for Distributed Database Processing with Optimized
Communication Cost in Dataflow model
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Absfract

Large dotabase processing is one of the most important technique in the information society. Since most large datdbase s
regionally distibufed, the distributed database processing has been brought into relief. Communications and data compressions
are the baosic  fechnologies for large database processing. In order fo maximize those fechnologies, the execution fime for the
task, the size of data, and communication time between processors should be considered.

In this paper, the dataflow scheme and verfically layered aliocation clgorithm have been used to optimize the distributed
lorge database processing. The basic concept of this method is reamangerment of processes considering the communication time
between processors. The paper dlso introduces measurerment mode! of the execution time, the size of output dafo, and the
communication time in order fo implement the proposed scheme.

= keyword : Multiprocessor, Distibuted Datobase, Dataflow, Allocation, Communication Cost

1. INTRODUCTION management systems (DBMSs). Although traditional
DBMSs can effectively manage large amount of

Applications such as Artificial Intelligence and data, they have failed to manage the complex
knowledge based  systems, because of  their semantics of databases effectively. Using a logic

underlying data size and ambiguity, require more
complicated techniques and sophisticated analysis
than those available in the traditional database

program as an advanced query language is an
alternative to support these complex applications. A
logic program is more suitable to represent and

manipulate the large semantic rules found in
* 43 FedTe FREANT e

bjun@suwon.ac ke ) o i i .
[2007/02/06 F-3L - 2007/02/13 A} - 200712120 AAIGHE] in conjunction with the relational data model is

knowledge base systems. A logic program, usually,
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used to support the efficient manipulation of large
data found in knowledge base applications [1].

1t has been shown that, multiprocessing
techniques offer performance improvement in the
execution of the database queries. These techniques
rely mainly on increasing the hardware utilization
and decreasing the execution time by exploiting fine
grain parallelism embedded in a query [2]
Complexities of the conventional multiprocessing
environment, however, have motivated researchers to
seek other alternatives for handling concurrent
applications.  Since 1970°s, dataflow paradigm has
been recognized as an alternative computational
model to support concurrency 3] The
attractiveness of the dataflow concept stems from
the fact that dataflow operations are asynchronous
in nature. Therefore, the instructions in dataflow
do not impose any constraints on sequencing except
for the data dependencies contained in the program.
In a dataflow computation, the execution of a
program can be progressed along various paths
simultaneously and hence, inherent parallelism can
be exploited more efficiently.

The execution of logic program in a dataflow
multiprocessor environment has been addressed in
[4]. However, these efforts did not address the
issue of load balancing and scheduling of the logic
programs. The scheme proposed in [5] maps a
logic program (AND/OR tree) onto a dataflow
graph. The parallel execution of the logic program
was improved by partitioning the generated dataflow
graph into subgraphs and allocating the resulting
subgraphs onto available processors. This paper is
an attempt to expand the scope of our previous
work by using a set of heuristic rules.

In handling large volume of data, execution time
of each basic operation is one of the major factors
that should be considered in an allocation policy.
The execution time depends on several parameters:
size of the data, size of main memory available,

page size, and the number of disk accesses. In the
curtent work, the execution time of each node is
estimated and statistical parameters are used to
calculate the size of the generated data. Such an
estimated value along with a simple set of heuristic
rules are used to rank and schedule the execution
of different dataflow paths.

The logic program and transformation of its
ANDJOR tree to a dataflow graph are briefly
discussed in section 2. This section also describes
how a dataflow graph is partitioned into vertical
layers as an attempt to balance computation time
and communication cost in a multiprocessor
platform.  The proposed optimization scheme is
presented in section 3. Finally, section 4 concludes
the paper with analysis of the proposed model and
its simulation results.

2. LOGIC PROGRAM AND DATAFLOW

2.1 Logic Program

Logic programming has grown out of research on
resolution inference. Resolution is an inference step
required to build a complete inference system for
predicate logic in clause form. Applying the rule of
resolution into the Hom clauses makes the resolution
inference  highly suitable for computer
implementation. From the language designers point
of view, a logic language is a highly structured
High Level Language (HLL). Similar to other HLL,
the manipulation of data and flow of control are the
main concerns in the implementation of the logic
programming languages. The basic structure that
programs deal with are constants, variables or
compound terms. A logic program is a collection
of statements which are known to be true. The
statements take two forms facts and rules. A fact
represents a known knowledge. A rule states some
relationships that is held for some data.  The
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program is used by posing a query to ask if some
other statements are true based on this knowledge.

fI(A,B,C) :- f2(AE), f3(D,E), f4(BD), f5(C,D).

f2(AE) - r1(AE).

£2(AE) :- 12(AF), f6(E,F).

£3(D,E) :- 13(D,E).

f4(B,D) :- 18(BK), r9(D.K).

f5(C.D) :- rl0D,LM), f7(L,N), f8(M,0),
r11(C,N,0).

f6(E,F) - t4(F,GH), r5(G,D), t6(H,)), r7(ELJ).

fILN) - r12(L.P), ri3(NP).

f8(M,0) :- r14(M,Q), r15(Q,R), r16(0OR).

? fl(a,b,C).

Figure 1. An Example of logic program.

Figure 1 shows a logic program and its AND/OR
tree representation is in Figure 2. In the program,
the fn represents the head of rules and the m
represents the fact. Figure 1 imposes a query
U1(a,b,C) which searches for the value of C with a
In Figure 2, the leaf
nodes represent the actual database relations to be
searched and the internal nodes represent the AND
- rectangular nodes and OR relations - circular
nodes, respectively. Arcs among the nodes

and b as known values.

represent data dependencies within the program.
The execution of logic progtam in a

multiprocessor ~ environment requires a parallel

£7(L, N) 8(M,0) \

‘

31

Figure2. AND/OR tree representation of Figure 1.
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execution model which enforces an efficient
execution order of the AND/OR branches. In the
sequential execution model ie, conventional
uniprocessor environment depth first execution of
an AND/OR tree is a reasonable paradigm.
However, in a parallel environment, where hardware
utilization and higher throughput are of concemn,
one is required to devise a more sophisticated
scheme to execute an AND/OR tree.

There have been various systematic approaches to
solve this problem [6] [7]. Most of these
techniques are based on the exploitation of
OR-parallelism, independent AND-parallelism, and
dependent AND-parallelism [8]. OR-parallelism
corresponds to a parallel search of the OR branches
in the ANDJOR tree, which means several clauses
matching a goal are processed concurrently.
Independent AND-parallelism occurs when several
data independent goals in a clause can be processed
simultaneously no common variables among goals.
Dependent AND-parallelism occurs when mutually
dependent goals that share common variables are
executed in parallel to produce a binding for the
variables.

Parallel execution of dependent AND-parallelism
branches are problematic. In such a case, it would
be impractical to check the consistency of all
combinations of the solutions obtained from each
body atom. In addition, the size of the
intermediate data generated becomes even more
problematic in applications with large amount of
data. To reduce the size of the intermediate data
and increase the parallelism, an efficient sequence
of execution based on the producer/consumer
relationship should be developed. On the other
hand, rules with OR-parallelism and independent
AND-parallelism can be executed in parallel.
However, this could easily result in an explosion in

the number of activated processes. Therefore, again
for practical cases where available resources are
restricted, the processes should be activated in a
limited manner which improves the performance and
increases the hardware utilization.

2.2 Graph Transformation

Dataflow techniques have been proposed as an
alternative execution model to the conventional
control flow model of computation. Because of the
parallel nature of dataflow computation, execution of
logic program in a dataflow multiprocessor
environment has been recognized by some
researches [4]. However, in spite of attractive
dataflow

researchers should develop effective schemes for

properties of  dataflow  processing,

partitioning and allocation of dataflow graphs in a
multiprocessor environment. To take advantage of
the dataflow computation in the execution of logic
program, a scheme has been proposed to
transform  the AND/OR tree to a dataflow graph
[S].  The converted graph: i) holds the rich
semantics embedded in an AND/OR tree, ii) allows
the exploitation of parallelism in a logic program,
and iii) allows efficient partitioning of the program
graph.

The transformation scheme observes the
propagation of data value(s) to map the AND/OR
tree to its equivalent dataflow graph. First, a
directed AND/OR tree is generated that shows all
possible propagation paths, hence, the execution
orders in a tree (Figure 2). Then the directed
AND/OR tree is converted to a dataflow graph.
Two special nodes are introduced to combine partial
results generated by the subgraphs - Intersect and
Union nodes that represent the AND relations and
OR relations in the original AND/OR tree,
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respectively.  Finally, to simplify the partitioning
and allocation task, an attempt has been made to
reduce the complexity of the dataflow graph by
removing bookkeeping operational nodes - ie,
ANDJOR nodes.
connecting the successor(s) of each deleted node to
its ancestor in the dataflow graph. Semantics of
the AND/OR nodes are still reflected by the

Intersect/Union nodes.

The node removal is done by

Figure 3. Dataflow Representation of Figure

Fgure 3 illustrates the converted dataflow graph
of the Figure 2. 'S’ and 'E’ are dummy nodes
which represent the start node and the exit node of
the graph. The intersect node and union node are
represented by N’ and U, respectively. The
numbers shown in the Figure 3 represent the node
numbers in the AND/OR tree of the Figure 1b.
Note that Figure 3 shows the execution order and
synchronization point of the operations (the leaf
nodes and the special nodes). Each node in the
dataflow graph can be any computational operation
depending on how the predicate has been defined.

Figure 4 shows the symbolic representation of
each dataflow node Vi is the input vector, Vo is
the output vector, s is the selectivity factor and R
is the cardinality of the underlying relation. For
example, in case of a select node, oVi(R), the input
vector represents conditions of the select operation.
These conditions could be in conjunctive, disjunctive
form generated by the preceding intersect node
andfor union node. Attributes of the input vector
and output vector are defined in the program as the
arguments of the predicate.

Vi Vo

—_—

Figure 4. Symbolic Representation of a
dataflow node.

2.3 Execution Time and Communication
Time

In a multiprocessor environment, one is required
to exploit the parallelism as a means to achieve a
higher performance. However, due to the limited
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hardware resources available and the communication
overhead, the parallel processes should also be
distributed among the available
efficiently. In the partitioning of a program, several

processors

issues should be taken into consideration: A
partitioning method should maximize the exploitable
parallelism  attempt to aggregate processes should
not restrict or limit parallelism. In other words,
processes that are grouped into a thread should be
the parts of a program where little or no
exploitable parallelism exists. In addition, the
longer  the thread length, the smaller the
communication cost between processors becomes.
This increases the locality and consequently
increases the utilization of the resources. In order
to realize the efficient partitioning of the program,
one is required to estimate the execution time of
each process.

In our scheme, the execution fime of each
dataflow nodes and the communication costs will be
estimated to exploit efficient partitioning. Using the
parameters in Figure 3, the execution time of each
node, Tee, is a function of Vi , R, s, and the
complexity of the operation. On the other hand,
the communication cost, Teomm, between the source
and the destination nodes is a function of V, and
the communication network. The timing is defined
as:

Texe=aXViXR (1)
Teomm = sep ¥ T X Vo (2)

where o is the time required to perform a unit
operation, Tew is the mandatory setup time to
transmit data, and T is the communication cost per
unit of data. @, Tswp and T are system dependent
parameters. V, is dynamic in nature and a function

of the user query, the underlying relation, and the
input vector and can be estimated as follow:

V,=s XxVixR (3

2.4 Vertically Layered Allocation

Once the AND/OR tree is converted to the
dataflow graph and the execution time of each node
is estimated, the dataflow graph is partitioned and
allocated to the available processors. Partitioning is
the division of an algorithm into procedures,
modules and processes. Assignment, on the other
hand, refers to the mapping of these units to
processors. The ultimate goal is to maximize the
inherent concurrency in a program graph by
minimizing contention for processing resources.
However, the problem is not a trivial one. It has
been shown that obtaining an optimal allocation of
a graph with precedence is NP-complete [9].
Therefore, heuristic solutions are the only possible
approach to solving the allocation problem. The
allocation problem is further complicated due to the
existence of variety of architectural differences as
well as interconnection topologies.

The Vertically Layered allocation scheme has
been proposed which compromises between
computation and communication costs [3].  The
scheme consists of two separate phases: separation
and optimization phase. The basic idea behind the
separation phase is to arrange nodes of a dataflow
graph into vertical layers such that each vertical
layer can be allocated to a processor. This is
achieved by utilizing Critical Path (CP) and Longest
Directed Paths (LDP) heuristics. These heuristics
attempt to distinguish the critical path of a program
and recursively determine the other vertical layers
by finding longest directed paths emanating from
the nodes which have already been assigned to
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vertical layers. The estimated execution time of
each node is used to determine the longest directed
paths.  Therefore, the CP and LDP heuristics
minimize contention and inter-processor
communication time by assigning each set of
serially connected nodes to a single PE. Once the
initial phase is completed, the Communication to
execution Time Ratio (CTR) heuristic algorithm
optimizes the final allocation. This is done by
considering whether the inter-PE communication
overhead offsets the advantage gained by
overlapping the execution of two subsets of nodes
in separate processing elements.

To apply the CTR heuristic algorithm, the
execution time of a mnew critical path which
includes the effects of inter-PE communication costs
is determined. If an improvement results after
applying the CTR heuristic, the nodes are combined
into a single PE. Since combining two parallel
subsets of nodes into a single processing element
forces them to be executed sequentially, a new
critical path may emerge from the optimization
process.  This process is repeated in an iterative
manner until no improvement in performance can be
obtained.

A simulator was developed to evaluate the
effectiveness of the vertically layered allocation
scheme.  Several dataflow graphs with varying
degree of complexities were chosen as the testbed.
The simulation results have shown that, in general,
the total execution time decreases as the number of
processing elements increases. Also, in cases where
inter-PE communication delays are negligible, the
scheme showed only slight degradation in
performance compared to the critical path list
scheme. However, as communication delays
increase, the proposed scheme offers promising

performance improvements.

3. OPTIMIZATION

Two main approaches, mnamely static and
dynamic, exist for task allocation. In spite of their
differences, the goal of program allocation is to
maximize concurrency in a program graph by
minimizing contention for processing resources. In
static allocation, the tasks are allocated at
compile-time using global information about the
program behavior and the system organization. The
cost of allocating tasks is incurred once for a given
program even though the program may be executed
repeatedly.  However, static allocation policies can
be inefficient when estimates of run-time dependent
characteristics are inaccurate. A dynamic allocation
policy on the other hand is based on measuring
processor loads at run-time, assigning activated tasks
to the least loaded processor and balancing the load
by migrating tasks. The disadvantage of dynamic
allocation is the overhead involved in determining
processor loads and allocation of tasks at run-time.

In this paper, we propose a hybrid static and
dynamic allocation scheme to achieve higher
performance in the execution of logic program.
The static allocation is enforced using a set of
heuristics based on the estimated execution time and
the size of output vector of each node.  The
dynamic allocation is enforced by observing the
actual size of the output vector of each node and
possible migration (elimination) of the node(s) or
branches during the execution time. In order to
carry out our optimization scheme, three types of
relationships among the serially connected nodes in
the dataflow graph are considered:

e Nodes connected based on producer/consumer
relationship: In this case, the output of a node

(producer) is directly consumed by the successor

node (consumer). Naturally, an empty output

3= olEful el (8213)
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vector of the producer node may eliminate the
consumer node.

¢ Two or more branches are merged with a union
node: If one of input branches to the union
node generates a non-empty output vector, the
input vector of succeeding node is non-empty.
Thus, the execution of the succeeding node is
guaranteed unless all the input vectors to the
union node are empty.

e Two or more branches are merged with an
intersect node: If one of the input branches to
the intersect node generates an empty output
vector, the output vector of the intersect node is
empty. Thus, the execution of the succeeding
node can be eliminated.

3.1 Heuristics for Static Allocation

In a shared nothing multiprocessor environment,
communication and synchronization among processes
are necessary to control the global execution of the
program.  Each processor executes its task, and
sends the result to the destination processor(s)
according to the data dependence among the
processes. Therefore, one is required to introduce a
proper control mechanism that guarantees a valid
execution. In our scheme, the converted dataflow
graph due to its partial ordering guarantees such a
valid execution order. However, in a multiprocessor
environment where computation resources are scarce,
one has to devise a scheme that reduces the
amount of the computation as well. In this section,
we propose a set of compile-time heuristics for
scheduling of the branches of the converted
dataflow graph in order to improve the performance.
The estimated execution time of each node (Tp)
and the size of the output vector (V) are used to
prioritize the execution of the paths as a means to

manage the resources.

Based on the AND and OR relationships
embedded in the definition of converted dataflow
graph — union node or intersect node — the
proposed optimization algorithm utilizes two sets of
the heuristic rules:

For the AND relation, the algorithm attempts to
eliminate as many branches as possible by early
scheduling of the ones with higher probability of
the failure:

i) Schedule the branches that have smaller

expected execution time,

ii) Schedule the branches that have smaller

expected output vector,

iii) Schedule the branches that have higher

number of the intersect nodes.

For the OR relation, the algorithm attempts to
improve the hardware utilization by early scheduling
the branches with higher probability of success.

i) Schedule the branches that have lower

estimated execution time,

i) Schedule the branches that have higher

expected number of the output,

iii) Schedule the branches that have fewer

number of the intersect nodes.

3.2 Effects on Dynamic Allocation

Performance of the aforementioned  static
allocation policy can be further improved by
considering the issue of dynamic allocation. In this
section, an optimization scheme has been presented
by observing the propagation of empty output as a
means of reducing the amount of computation at
run-time. The size of output vector is a function
of the user query, the size of relation, selectivity,
and the size of input vector (refer to Figure 4).
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Naturally, a node with a non-empty input vector is
executed and an empty output vector is propagated
throughout the program graph. Therefore, if a node
generates an empty output vector at run-time,
propagation of the empty output vector could
eliminate some of the branches in the dataflow
graph.

As discussed earlier, if one of the input branches
to the union node generates a non-empty output
vector, the input vector of succeeding node is
non-empty. Therefore, the propagation of an empty
output vector can be terminated at the union node
unless all the input vectors to the union node are
empty if a node generates an empty output vector,
the next possible valid execution point is the closest
union node. As an example in Figure 3, an empty
output vector from node 25 eliminates processing of
the next intersect node and node 27. This in turn
will eliminate node 26 as well. Thus, the next
unjon node in line has to wait for input from node
11.  Interestingly, generation of an empty output
vector by node 15 eliminates the whole dataflow
graph.  Algorithm 1 shows the sequence of the
operations:

Algorithm 1.

BEGIN

If (output is empty) {
Find next Union node.
Eliminate processes until the Union
node.}

Perform next node.

END

Finally, the run-time scheduling as discussed
above could also drastically improve the resource
utilization by reducing the communications among
the vprocessors and reducing the processors’
operational loads.

4. SUMMARY AND CONCLUSION

Parallel execution of the logic program and its
optimization ~ within the scope of database
environment are main interests of the paper. The
execution of logic program in a multiprocessor
environment requires a parallel execution model
which enforces an efficient execution order of the
AND/OR  branches. We have developed a
technique to map the logic program onto a dataflow
graph to support scheduling and aflocation of the
logic programs in a multiprocessor environment.
This was achieved by partitioning the generated
dataflow graph into vertical subgraphs and allocating
the resulting subgraphs on available processors.
This technique was further improved by enhancing
the scope of the original partitioning scheme by a
set of compile-time and run-time optimization rules.
To evaluate the practicality and feasibility of the
scheme, a simulator has been developed to measure
the effectiveness of the proposed optimization
Performance analysis indicates that the
proposed scheme is very effective in reducing the

scheme.

overall execution time through static and dynamic
scheduling.
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