DOI QR코드

DOI QR Code

원자스케일 마찰의 하중 및 강성 의존성

Load and Stiffness Dependence of Atomistic Sliding Friction

  • 성인하 (한남대학교 기계공학과)
  • Sung, In-Ha (Dept. of Mechanical Engineering, Hannam University)
  • 발행 : 2007.02.28

초록

Despite numerous researches on atomic-scale friction have been carried out for understanding the origin of friction, lots of questions about sliding friction still remain. It is known that friction at atomic-scale always shows unique phenomena called 'stick-slips' which reflect atomic lattice of a scanned surface. In this work, experimental study on the effects of system stiffnesses and load on the atomic-scale stick-slip friction of graphite was performed by using an Atomic Force Microscope and various cantilevers/tips. The objective of this research is to figure out the dependency of atomic-scale friction on the nanomechanical properties in sliding contact such as load, stiffness and contact materials systematically. From this work, the experimental observation of transitions in atomic-scale friction from smooth sliding to multiple stick-slips in air was first made, according to the lateral cantilever stiffness and applied normal load. The superlubricity of graphite could be verified from friction vs. load experiments. Based on the results, the relationship between the stickslip behaviors and contact stiffness was carefully discussed in this work. The results or this work indicate that the atomic-scale stick-slip behaviors can be controlled by adjusting the system stiffnesses and contact materials.

키워드

참고문헌

  1. Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S., 'Atomic-scale friction of a tungsten tip on a graphite surface,' Phys. Rev. Lett., Vol.59, pp.1942-1945, 1987 https://doi.org/10.1103/PhysRevLett.59.1942
  2. Morita, S., Fujisawa, S. and Sugawara, Y., 'Spatially quantized friction with a lattice periodicity,' Surf. Sci. Rep., Vol. 23, pp.1-41, 1996 https://doi.org/10.1016/0167-5729(95)00009-7
  3. Fujisawa, S., Kishi, E., Sugawara, Y. and Morita, S., 'Two-dimensionally discrete friction on the NaF(100) surface with the lattice periodicity,' Nanotechnol., Vol.5, pp.8-11, 1994
  4. Germann, G J. et al., 'Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces,' J. Appl. Phys., Vol.73, pp.163-167, 1993 https://doi.org/10.1063/1.353878
  5. Takano, H. and Fujihira, M., 'Study of molecular scale friction on stearic acid crystals by friction force microscopy,' J. Vac. Sci. Technol. B, Vol. 14, pp.1272-1275, 1996 https://doi.org/10.1116/1.589079
  6. Miura, K., Sasaki, N. and Kamiya, S., 'Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip,' Phys. Rev. B, Vol. 69, Art. No.075420, 2004
  7. Fujisawa, S., Yokoyama, K., Sugarawa, Y. and Morita, S., 'Load dependence of sticking-domain distribution in two-dimensional atomic scale friction of NaF(100) surface,' Tribol. Lett., Vol. 9, pp.69-72, 2000 https://doi.org/10.1023/A:1018856427479
  8. Gnecco, E. et al., 'Velocity Dependence of Atomic Friction,' Phys. Rev. Lett., Vol. 84, pp.1172-1175, 2000 https://doi.org/10.1103/PhysRevLett.84.1172
  9. Bennewitz, R. et al., 'Atomic-scale stick-slip processes on Cu(111),' Phys. Rev. B, Vol. 60, R 11301-4, 1999 https://doi.org/10.1103/PhysRevB.60.R11301
  10. Zhong, W. and Tomanek, D., 'First-principles theory of atomic-scale friction,' Phys. Rev. Lett., Vol. 64, pp.3054-3057, 1990 https://doi.org/10.1103/PhysRevLett.64.3054
  11. Holscher, H., Schwarz, U. D. and Wiesendanger, R., 'Modeling of the scan process in lateral force microscopy,' Surf. Sci., Vol. 375, pp.395-402, 1997 https://doi.org/10.1016/S0039-6028(96)01285-X
  12. Sasaki, N. Kobayashi, K. and Tsukada, M., 'Atomicscale image of graphite in atomic-force microscopy,' Phys. Reν. B, Vol. 54, pp.2138-2149, 1996 https://doi.org/10.1103/PhysRevB.54.2138
  13. Johnson, K. L. and Woodhouse, J., 'Stick-slip motion in the atomic force microscope,' Tribol. Lett., Vol. 5, pp.155-160, 1998 https://doi.org/10.1023/A:1019106127794
  14. Sung, I.-H., Cannara, R. J. and Carpick, R. W., 'Transitions in atomic-scale stick-slip friction behavior on graphite due to system stiffness,' 2005 MRS (Material Research Society) Fall meeting, Nov.28-Dec.2, 2005, pp.966, Boston, USA
  15. Medyani k, S. N., Sung, I.-H., Liu, W. K. and Carpick, R. W., 'Predictions and observations of multiple slip modes in atomic-scale friction,' Phys. Rev. Lett., Vol. 97, No. 13, Art. No.136106, 2006
  16. Sader, J. E., Chon, J. W. M. and Mulvaney, P., 'Calibration of rectangular atomic force microscope cantilevers, ' Rev. Sci. Instrum., Vol. 70, pp.3967-3969, 1999 https://doi.org/10.1063/1.1150021
  17. Green, C.P. et al., 'Normal and torsional spring constants of atomic force microscope cantilevers,' Rev. Sci. Instrum., Vol. 75, pp.1988-1996, 1995 https://doi.org/10.1063/1.1753100
  18. Ogletree, D. F., Carpick, R. W. and Salmeron, M., 'Calibration of frictional forces in atomic force microscopy,' Reν Sci. Instrum., Vol. 67, pp.3298-3306, 1996 https://doi.org/10.1063/1.1147411
  19. Tomlinson, G.A., 'A molecular theory of friction,' Phil. Mag., Vol. 7, pp.905-939, 1929 https://doi.org/10.1080/14786440608564819
  20. Socoliuc, A., Bermewitz, R., Gnecco, E. and Meyer, E., 'Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction,' Phys. Rev. Lett., Vol.92, Art. No.134301, 2004