DOI QR코드

DOI QR Code

Physiochemical Properties of Carrageenan Hydrolysates by Organic Acids

카라기난의 유기산 가수분해물의 기능 특성

  • Joo, Dong-Sik (Dept. of Foodservice Industry, Hanzhong University) ;
  • Cho, Soon-Yeoung (East Coastal Marine Bioresources Research Center, Kangnung National University)
  • 주동식 (한중대학교 외식산업학과) ;
  • 조순영 (강릉대학교 동해안해양생물자원연구센터)
  • Published : 2007.03.31

Abstract

This study was conducted to investigate various physiochemical activities of carrageenan hydrolysates obtained with organic acid treatments. The hydrolysates treated with citrate and malate at $100^{\circ}C,\;110^{\circ}C\;and\;120^{\circ}C$ had antimicrobial activities against Bacillus cereus and Bacillus subtilis. Especially, the hydrolysates with malate at $120^{\circ}C$ for 180 min treatment had the strongest antimicrobial activity to Bacillus subtilis. Regardless of the hydrolysis conditions, inhibition ratios of tyrosinase activity by citrate and malate under $100{\sim}120^{\circ}C$ were over 97%. Especially, the inhibition ratios for tyrosinase activity of the hydrolysates obtained with citrate at $100^{\circ}C$ for 180 min and at $120^{\circ}C$ for 90 min were 99.4% and 98.2%, respectively. Also, the inhibition ratios for tyrosinase activity of the hydrolysates obtained with malate under the same conditions were about 99.5% and 99.3%, respectively. The APTT as anticoagulant activity of carrageenan hydrolysates with 0.3% malate and citrate at $80^{\circ}C$ for 180 min were $2,451{\pm}18(sec)\;and\;1,617{\pm}15(sec)$, respectively.

유기산으로 분해된 카라기난 가수분해물의 각종 생리활성을 실험한 결과, citrate와 malate를 가수분해 매체로 이용할 경우, $100^{\circ}C,\;110^{\circ}C$$120^{\circ}C$ 가수분해물은 B. cereus와 B. subtilis에 강한 항균활성을 나타내었으며, $120^{\circ}C$에서 180분간 가수분해한 것이 B. subtilis에 대해 특별히 강한 항균활성을 나타내었다. 그러나 충치균인 St. mutans에 대한 항균활성은 없는 것으로 확인되었다. Tyrosinase 활성 저해 효과는 $100^{\circ}C$$120^{\circ}C$에서 처리된 시료 중에서 citrate와 malate 처리구가 97% 이상의 높은 tyrosinase 활성을 저해하는 것으로 확인되었다. Citrate로 $100^{\circ}C$에서 90분 처리된 시료의 경우 97.1%, 180분 처리된 것은 99.4%의 저해 활성을 나타내었고, $120^{\circ}C$에서 90분 처리된 시료의 경우 98.2%의 tyrosinase 활성을 억제하는 것으로 나타났다. 한편, malate 처리구도 처리온도와 처리시간에 따라 약간의 차이는 있지만 전체적으로 citrate 처리구와 비슷한 결과로 $98{\sim}99.5%$의 높은 tyrosinase 활성 저해 효과를 나타내었다. 당질 농도에 따라 tyrosinase 활성 저해 효과가 다르게 나타났으며, 환원당 및 전당의 농도에 비례하는 것을 확인할 수 있었다. 항혈액응고활성은 유기산의 종류에 따라 차이를 나타내고 있는데, 0.3% malate 용액으로 $80^{\circ}C$에서 180분간 처리 시료의 경우 APTT가 $2,451{\pm}18(sec)$로 항혈액응고활성이 가장 높았으며, 동일한 조건에서 얻어진 0.3% citrate 가수분해물이 $1,617{\pm}15(sec)$였으며 lactate, succinate, acetate 가수분해물 순으로 높았다. 가수분해가 진행됨에 따라 분자량이 적어지고 결국은 황산기 함량도 낮아지게 됨으로써 항혈액응고활성이 낮아지는 것으로 여겨졌다.

Keywords

References

  1. Rees DA. 1969. Structural conformation and mechanism in the formation of polysaccharide gels and networks. Adv Carbohy Biochem 24: 267-332 https://doi.org/10.1016/S0065-2318(08)60352-2
  2. Harris P. 1990. Food gels. Elsevier Applied Science, London. p 79-120
  3. Nishimo T, Nagumo T. 1992. Anticoagulant and antithrombin activities of oversulfated fucans. Carbohyr Res 229: 355-362 https://doi.org/10.1016/S0008-6215(00)90581-0
  4. Hirata A, Itoh W, Tabata K, Kojima T, Itoyama S, Sugawara I. 1994. Anticoagulant activity of sulfated schizophyllan. Biosci Biotechnol Biochem 58: 406-407 https://doi.org/10.1271/bbb.58.406
  5. Joo DS, Cho SY, Lee EH, Yang ST. 1999. Preparation of carrageenan oligosaccharides using carrageenase from Pseudomonas alcaligenes JCL 43 and its functional properties. Korean J Life Sci 9: 423-429
  6. Joo DS, Cho SY. 2003. Preparation of carrageenan hydrolysates from carrageenan with organic acid. J Korean Soc Food Sci Nutr 36: 1-5 https://doi.org/10.3746/jkfn.2007.36.1.001
  7. Somogyi M, Nelson N. 1952. Notes on sugar determination. J Biol Chem 195: 19-23
  8. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1958. Colorimetric method for determination of sugar and related substances. Anal Chem 28: 350-356 https://doi.org/10.1021/ac60111a017
  9. Lorian V. 1991. Antibiotics laboratory medicine. Williams & Wilkins, Baltimore. p 17-105
  10. Teraguchi S, Uehara M, Ogasa K, Mitsuoka T. 1978. Enumeration of bifidobacteria in dairy products. Jpn J Bacterial 33: 753-758 https://doi.org/10.3412/jsb.33.753
  11. Horowitz NH, Fling M, Macleod HA, Sheoka N. 1960. Genetic determination and enzymatic induction of tyrosinase in Neurospora. J Mol Biol 2: 96-104 https://doi.org/10.1016/S0022-2836(60)80031-9
  12. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  13. Bullen CL, Teale PV, Willis AT. 1976. Bifidobacteria in the Intestinal tract on infants: an in vivo study. J Med Microbiol 3: 335-344 https://doi.org/10.1099/00222615-9-3-325
  14. Kim CR. 1999. Use of galactooligosaccharides from cheese whey for growth of Bifidobacteria. Korean J Food & Nutr 12: 50-54
  15. Marayama S, Mitachi H, Tanaka H, Tomizuka N, Suzuki H. 1987. Studies on the active site and antihypertensive activity of angiotensin I converting enzyme Inhibitors derived from casein. Agric Biol Chem 51: 1581-1586 https://doi.org/10.1271/bbb1961.51.1581

Cited by

  1. Isolation and Charaterization of Bioactive Peptides from Hwangtae (yellowish dried Alaska pollack) Protein Hydrolysate vol.13, pp.3, 2008, https://doi.org/10.3746/jfn.2008.13.3.196
  2. Porphyridium cruentum의 성장 및 당질 생산에 미치는 배양 조건의 영향 vol.41, pp.6, 2008, https://doi.org/10.5657/kfas.2008.41.6.446