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Abstract - lb understand the structure of molecules, various computational methodologies have been extensively investigated 
such as the Vbronoi diagram of the centers of atoms in molecule and the power diagram for the weighted points where the 
weights are related to the radii of the atoms. For a more improved efficiency, constructs like an “-shape or a weighted tz-shape 
have been developed and used frequently in a systematic analysis of the morphology of molecules. Howevei; it has been 
recently 아〔own that “-shapes and weighted(7-shapes lack the fidelity to Euclidean distance for m이ecules with polysized 
spherical atoms. We present the theory as well as algorithms of ^-shape and ^-complex in R3 which reflects the size difference 
among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and 
therefore will have a significant impact on applications based on particles, in particular in molecular biology. The theory will 
be equivalently useful for other application areas such as computer graphics, geometric modeling, chemistry, physics, and 
material science.
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1. Introduction

The topology among particles frequently plays a core role 
in many applications. In particular, particles are important in 
computer graphics, GIS, biometrics, etc. An immediate 
example is to interpolate a surface from a point cloud where 
the proximity information among nei아iboring points is 
necessary. One of the emerging application areas of particle 
systems is structural molecular biology since the morphology 
of a m이ecule is one of the most important factors to 
determine the fimctions of the molecule.

The topological characteristics among particles have been 
long time questions in mathematics, science and engineering. 
Due to the lack of a proper representation, in old days, the 
studies on the topological characteristics among particles 
were primarily done by either investigating all pairwise com­
parisons or employing a simple grid or a bucket. In 1967, 
Bernal and Finney used the Vbronoi diagram of points, where 
the points are the centers of spheres, to analyze the packing 
characteristics of spherical particles such as the distributions 
of particle density, the number ofV)ronoi feces for Vbronoi 
cells, and the number of \bronoi edges for Vbronoi faces. 
[4], Since then, many studies have followed in the studies of 
geometric and topological characteristics of molecular systems 
and the \bronoi diagram of points has been extensively used. 
In 1974, Richards used the \bronoi diagram of atom centers 

to estimate the volume of the space that each atom or a 
group of atoms in protein occupies, etc. [33]. Since then, 니ntil 
today, there have been numerous studies in physics, 
chemistry, biology, and various other fields which use the 
Vbronoi diagram of atom centers [1,8,30,40,42].

While the size diflferences among atoms are significantly 
meaningful, the Vbronoi diagram of atom centers does not 
reflect the size differences. In 1982, Gellatly and Finney 
proposed to use a radical plane as the bisector between two 
atoms so that the space occupied by a set of polysized atoms 
is properly tessellated [14]. This transformation is later named 
the power diagram of atoms by Aurenhammer [2] since the 
distance metric of the tessellation using radical planes is 
indeed a power distance. Since then, the power diagram has 
been very popular in the analysis of systems of polysized 
particles in science and engineering [16,28,37,41].

On the other hand, the concept of cu-shape in R2 was 
proposed as a generalization of the convex hull of a point set 
and was 니sed to define the shape of the point set [12,13]. 
The idea was based on a transformation from the Delaunay 
triangulation which is a topological dual of the \bronoi diagram 
of points [13]. Even though it is powerfill for points, the a- 
shape does not reflect the size diflferences among spherical 
particles at all as it is based on the Vbronoi diagram of points. 
Hence, the concept was later extended to a weighted a- 
shape which is based on the regular triangulation, the dual of 
poww diagram [9]. However; it turns out that the power diagram 
still has limitations for the queries based on Euclidean distance 
metric.

Recently the theory of ^shape and /^-complex, which are 
respectively generalizations of the ordinary or-shape and a-

http://www.ijcc.org
mailto:dskim@hanyang.ac.kr


92 International Journal of CAD/CAM Vol. 7, No. 1, pp. 91-101

Fig. 1. The ^shapes for a protein via different "-values: (a) a protein (PDB ID: lv4f) consisting of 133 atoms (different c이。rs denote 
different atoms 84 C's, 28 O's and 21 N's), (b) the ^-shapes with 0, (c) fi= 0.7A, (d) P= 1.4A, (e) "= 5A, and (f) p= 50A.

complex, was proposed and used as a powerful tool for 
understanding proximity among particles [24,38]. The 
complex is based on the quasi-triangulation which is the 
dual structure of the Vbronoi diagram of spheres (also known 
as an additively weighted Vbronoi diagram). We believe that 
the 序shape will be more applicable to many problems based 
on Euclidean distance metric. Fig. 1 shows different 昌shapes 
with respect to different Rvalues from the protein shown in 
Fig. 1(a) which is downloaded from the Protein Data Bank 
(PDB) [32].

This paps is oiganized as follows. In Section 2, we briefly 
review the \bronoi diagram of spheres and its dual structure 
called a quasi triangulation, which are the basis of the /3- 
complex. Section 3 presents the theory of 屏fonily consisting 
of 伊1讪，>5-shape, and 昌complex. Section 4 explains the 
algoritims to compute a ^-complex and its data structure. In 
Section 5, we provide several applications of ^complex to 
biological problems such as the molecular surfece construction, 
pocket extraction and various mass property computations. 
Finally, we conclude the paper.

2. Related works

The theoiy of 伽omplex is a generalization of the ordinaiy 
rz-complex. The ^complex is computed from the Delaunay 
triangulation which is the dual structure of 1he Vbronoi diagram 
of points. In a similar mettiod, 号complex is comp니ted from 
the quasi-triangulation which is the dual structure of the 
Vbronoi diagram of spheres. In this section, we describe the 
Vbronoi diagram of spheres, frequently known as an additively 
weighted Vbronoi diagram, and its dual called a quasi­
triangulation.

2.1 Vbronoi diagram of spheres and quasi-triangulation
A Xbronoi diagram VD(S) for ttie sphere set S is defined 

as VD(5) = {VC(5i),VC(s,2)?…,VC(&)} where the connectivity 
among the entities are appropriately represented. Associated 
with each sphere s £ S, there is a corresponding Vbronoi 
cell (or region) VC(Sj) for 品,where VCi= {p\ dist(P> Q)— 
< dist(p, Cj) -rj, i^j}, where dist (p, q) denotes Euclidean 
distance between pointsp and q. In R3, VD(5) consists of

vr= {Vi , e；,
and {c；, c；,... c.} which denote the sets ofXbronoi 

vertices, Vbronoi edges, Vbronoi feces, and Vbronoi cells (or 
regions) in the Vbronoi diagram VD(5), respectiv아y. From 
the definition of a Vbronoi diagram, a Vbronoi vertex v7 is 
the center of an empty sphere tangent to four nearby atoms, 
while a Vbronoi edge e7 is defined as a locus of points equi­
distant from the surfaces of three sumo니ndin응 atoms. In 
addition, a Vbronoi fece fv is the surfece defined by two 
neighboring atoms. Note that the fece is always a hyperbolic 
surface and any point on the face is equi-distant from the 
surfaces of both atoms. For more details, readers are recom­
mended to refer to [20,21,22].

In the cases of the Vbronoi diagram of points or the power 
diagram, their respective dual complexes are well-defined as 
tiie Delaunay and the regular triangulations. However, the 
dual of the Vbronoi diagram had not been discussed until it 
was recently reported by Kim et al, [23]. A quasi-triangulation 
QT(S) is defined as QT(S) 드 {% 互, Ab A2, ...} where r 
and A denote a tetrahedron and a triangle, respectively, which 
are the dual cells in the quasi-triangulation QT(5), where tiie 
topology is appropriately represented. Note that a dual cell 
inQT(S) may degenerate to a trian이e [23].

萨t 诏티皆 , v?, ；阳产0티*  , e?, ...}尸= {斧 , 

j?, and CQ = {cy , ，...} denote the sets of vertex

simplexes, edge simplexes, fece simplexes, and cell simplexes 
in QT(5), respectively. Then, a quasi-triangulation QT(^) for 
an atom set A can be conveniently represented as QT(4) 
= (VQ, EQ, Fq, C^). A \bronoi diagram VD(4) is mapped 
to a quasi-triangulation QT(^) as follows.

• A Vbronoi cell cy g Cv is mapped to a vertex e VQ. 
The vertex uQ corresponds to tiie center of a generator 
atom ai corresponding to a Vbronoi cell cv.

• A Vbronoi face fv g Fv is mapped to an edge  g Eq. 
The edge eQ is a line segment bo나nded by two

*

• A Vbronoi edge e" e Ev is mapped to a face/2 g Fq. 
The fece产 is a triangle bo니nded by three 's.*

• A Vbronoi vertex if g Kzis mapped to a cell cQ g C2
The cell is a tetrahedron bounded by fi기jt产's.
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The dual structure QT(4) is called a q니asi-triangUation 
since it is not always a valid triangulation ofR3 space. Recall 
that the topological duals of the Vbronoi diagram of points 
and the power diagram are called tiie Delaunay triangulation 
and ttie regular triangulation, and both triangulations are 
simplicial complexes which tessellate the convex hull of 
input points by a set of tetrahedra. If they do intersect, two 
tetrahedra in lhese triangulations intersect each oflier at a 
vertex, an edge, or a triangular face. In QTQ4), however, this 
property is not guaranteed.

2.2 InterWorld Data Structure (IWDS) for quasi­
triangulation

Since a quasi-triangulation QT(4) is not a simplicial 
complex in general, it is usually stored as a primal structure, 
i.e. the Vbronoi diagram of the atom set A [5]. Recently, a 
method has been proposed to directly store QT(4) in a set of 
simple arrays which is called an InterWorld data structure, 
abbreviated as IWDS [23]. It was 아lown in [23] that the 
IWDS compactly stores the topology of QTJ) with a 
guaranteed query efficiency.

In [23], it was shown that there are three kinds of 
anomalies which cause the violation of the definition for 
simplexes to form a complex: a multiplicity anomaly, a 
singularity anomaly, and a degeneracy anomaly. By coping 
with the anomalies in the quasi-triangulation, which are 
surprisingly less frequent, the compact IWDS is devised to 
store the topology of a quasi-triangulation as a straightforward 
extension of the array-based data structure for a simplicial 
complex [23]. IWDS maintains one more relatively small 
array in addition to the array for simplicial complexes: a 
gate array. The multiplicity anomaly and the degeneracy 
anomaly are handled by appropriately adj 니sting the values 
in the elements of arrays and the singular anomaly is 
handled by the gate array signifying the singularity. For the 
details, please refer to [23],

IWDS stores the complete information about the topology 
of QT(5) in tiie mo 아 compact way. It can be used for both 
representing the topology of QT(S), or equivalently VD(S), 
in a code and storing QT(S) or VD(5) in a file. When we 니se 
it in codes, however, we slightly extend IWDS to facilitate a 
more convenient manipulation of the simplexes. The extension 
called an extended IWDS, denoted by elWDS, is done by 
introducing two more arrays to IWDS: edge and face arrays. 
In elWDS, the gate array is not necessary any more since 
the gate information can now be stored in the corresponding 
edge.

In elWDS, the entities of quasi-triangulation in a neigh­
borhood are interconnected in a straight forward manner. A 
vertex has a pointer to one of the incident edges, and an edge 
has a pointer to one of the incident feces and two pointers to 
its two vertices. A triangular fece has two pointers to the two 
tetrahedra which share the fece and three pointers to the 
three edges bounding the face. A tetrahedron has four pointers 
to the four bounding triangular feces. With elWDS, any pair 
of two adjacent entities in QT(S) can be traversed with at 
most three hops via pointers.

3. /^family

Recently the theory of ^-complex was proposed and used 
as a powerfill tml for underetanding proximity among particles. 
Although flie a-complex has been widely 니sed in variety of 
applications due to its theoretical beauty and simplicity, it 
does not property account for size difference among given 
spheres from the viewpoint of Euclidean distance. In 
comparison, the 丿^complex fully considers the Euclidean 
fidelity to particles sizes. First, in this section, we explain the 
^family which is composed of 昌hull, ^-shape, and {3- 
complex. Then, we provide a great asset of ^complex in the 
Euclidean metric.

3.1 号hull and /?-shape
Conceptually, a 伽ull is the generalization of an。나!다 11 

and can be similarly described. The point set, from which 
an tt-hull is defined, is now replaced by a set of three 
dimensional spherical balls. As for the case of c사lulls, think 
of R3 filled with Styrofoam and some spherical rocks 
scattered around inside the Styrofoam. The radii of the 
spherical rocks vary. Then, carving out tiie Styrofoam with 
an omnipresent and empty spherical eraser with the radi니s 
of /7will result in a /?-hull. Since the eraser is omnipresent, 
there can be interior voids as well. The molecular surfece, 
used in biology quite a long time, is indeed equivalent to the 
伊mil of the molecule [6,7]. Figs. 2(a) and 2(d) show an 
identical atom set in the plane and two 昌hulls or molecular 
surfaces corresponding to two erasers with different sizes. 
Let us call these erasers the /?-probe.

Suppose that we have a /%hull of an atom set A. Then, 
we straighten the surface of the 昌hull by substituting 
straight edges for the circular ones and trian이cs for the 
spherical caps where the vertices are the centers of the atoms 
contributing to the 丿Qh나IL Then, the straightened object is 
the /3-shape of A. Figs. 2(b) and 2(e) illustrate two 昌shapes 
corresponding to the two 丿Qhulls in Figs. 2(a) and 2(d), 
respectively.

3.2 号complex
Suppose that J where \A\=k^ 1 where k is the 

dimension of the space for the centers of atoms e J are 
defined. Note that k+ 1 center points define ^-dimensional 
simplex d니e to the general position assumption. Let 赤 be 
the smallest empty open ^-probe whose boundary 

touches all atoms of A from outside. Let/蜀 be the radius of 
bq Hence, 2 < | J | < 4 in the three-dimensional space since 
1 <k<3. The case of k=0 is defined specially since in 
this case trivially reduces to a point and the corresponding 
atom always maps to a vertex simplex.

Definition 1 For 1 <k<3 and0 </3< co, let £；少 be the 
set qfk-simplexes 以 in the (3~complexfor which a (3-probe 

is empty andpx< & Especially. Z()伊=Cfor any value 
of p. where C= {cb c2, %} is the set of atom centers.
Then, a ^-complex C& is defined as C§= {(%。矛|以 £ 

萼3•，善 c:l,0<A<3).
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Fig. 2. ^-hulls, ^-shapes and ^-complexes for the atoms in R2: (a) ten two-dimensional atoms and the 序hull corresponding to a small p- 
pr이囂 with (d) the ^hull of the same atom set corresponding to a large ^-probe with & where 切 (b) and (e) the ^shapes 
corresponding to p\ and 易,and (c) and (f) the ^-complexes by 爲 and 禺.

Therefore, a 序complex * is defined as the set of either k- 
simplexes (羽 in 伊 or those fc-simplexes which bound (左+ 

l)-simplexes inC^. In addition, each simplex in a ^complex 
C》may take one of the following three states depending on 
the value of pt

Definition 2 A simplex a in a p-complex takes one of 
the following three bounding states,

• singular: a belongs to the boundary of p-shape and 
does not bound any higher-dimensional simplex in the 
corresponding ^-complex Cp.

• regular: a belongs to the boundary of fi-shape S卩 and 
bounds at least one higher-dimensional simplex in the 
corresponding /3-complex Cp.

• interior: cr does not belong to the boundary of。시叫e 
& and cris the intersection between neighboring simplexes 
qfhigher dimensions in the corresponding /^complex Cp.

The 必"Complex of an atom set』is a subset of simplexes 
in the quasi-triangulation of A where the volume union of 
die simplexes in the /^complex is i(fentical to te con^ponding 
丿8아lape. Shown in Figs. 2(c) and 2(f) are the ^-complexes 
of tfe ^-stapes in Figs. 2(b) and 2(d), respectively. As shown 
in the figure, each /^shape is tessellated into a set of simplexes. 
A simplex a in a ^-complex takes one of the above three 
bounding states [38]. Note that a simplex has one of these 
state if it belongs to a ^-complex. Note tat yg-shape is 
defined as a sub维t of the underlying sp阪e of all the simplexes 
in /^-complex where ttie underlying space of simplexes 
means the union of flie spaces occupied by the simplexes. 
Therefore, we can say that the ^-shape can be obtained from 
the con?翊。Tiding 伊爲叫屐 and flie 伽cmp屁 fidly contains 
the information of ^-shape.

Also, a simplex can be one of the following two situations 
depending on the condition of the smallest jx)ssible tangent 
sphere Z which is simultaneously tangent to lhe atoms corres­
ponding to the vertic^ ofthe simplex from outside.

Definition 3 A simplex a is classified according to the 
following intersection 源猝.

• <yis unattached if the佗 is no intersection between Z and 
any atom in A.

• cris attached if there is an intersection between Z and 
some atom in A,

The valid intervals of Rvalues for each simplex are shown 
in Table 1. Let CH(4)denote the convex hull of wh이e 
atoms in the atom set A, and CH(Q denote the convex hull 
of the centers of all atoms in A. In addition, let CH (A) 
denote the polytope defined by the center of atoms which 
contribute to CH(J). When there is a cylmdrical boundary 
between a pair of atoms in CH(/), a corresponding edge is 
defined in CH (A) between the centers of the two atoms. 
When tiiere is a triangular boundaiy for a triplet of atoms in 
CHQ4), a correspondfeg triangle is defined in CH (A) among 
the centers of the taee atoms. Note that CH (A) is not 
identical to CH(Q in general.

All simplexes 양 e QT(X) have their respective intervals 
according to the singular, regular, or interior stetes in the 
complex * 야 is a simplex ofthe ^complex Cp iffp is 
contained in this interval. A regular simplex belongs to the 
boundary ofthe interior of ^-shapes. In a /kx)mplex, a regular 
simplex bounds some higher-dimensional simplexes while a 
singular simplex does not The interior simplexes triangulate 
the interior of ^-shapes.

The meaning of tiie rules in Table 1 can be explained as 
follows. First, a tetahedron simplex ’ Case 1 in the table, is 
defined and remains as intaior after a minimum empty sphere 
tangent to a set of four atoms in / is found. Note that can 
be only interior, if it is an element of a ^-complex.

Case 2 denotes an ed용e or a fece simplex which is not on 
the boundaiy ofthe convex hull and unattached andn^ds a 
little bit of explanation. The other cases can te similarly 
explained. Let A = {% a*  1 <i,J<n,详j, Af=Au {a^, 
and At!=A<J Suppose tat 顷 and。負 are
two triangles among othei^ incident to an edge simplex 顷
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Table 1. The set of rules that transforms simplexes in the quasi-triangulation to ^complex

Case Bounding State
Singular Regular Interior

Tetrahedron 1 ("이

金。Unattached 2 (S少】 (少，志］ (ra，。이

金 8 CHAttached 3 (少，志］ (ra，。이

Edge or triangle e d CH 以),Unattached 4 (0，少］ (少，。。］

e d CHAttached 5 (也,。이

Isolated triangle 6 (0,巧]

Vertex 史 a CH(A) 7 ［Y。,少］ (也，項］ ，。이

宅 dCH(A) 8 [-8, g冒] (S。이

In addition, suppose that 0<Pai<Pai'< and the radius p 
corresponding to any other triable incident to 中 satisfies 
Pa,<P<Pa"- Then, and Pa = p矛.

Suppose Pa </3< /£4. Then, an empty /?-probe can keep 
its tangency with the two atoms 4 and aj. This means that 
the 号probe does not intersect with any other atom in the 
atom set A. Hence, the edge 以 is defined in the ^-complex 
while no triangle incident to the edge is defined. The edge 
O彳 A is singular since it exists as a singleton. Note that, 
when the value of is in this range, neither。■善 nor 顷 is a 
triangle in the ^-complex yet.

Suppose that < /3< ~Pa . Then, becomes a triable 
and is an element in 昌complex while the other triable。牙” 

is not defined yet in y?-complex. Since the edge bounds a 
triangle 以’in this case, the edge is called regular. If

< p< 00, the edge simplexA is in the interior of 昌 

complex because the two incident triangles 顷 and o刑 are 
now the elements of yS-complex and the edge is shared by 
the two triangles. Note that the edge。歹 A does not even 
exist if pA.

Suppose that q A is now a face simplex which can be 
similarly explained to the previous edge case. In other words, 
c待 A is a 2-0： Then, an explanation similar to the above can 
be made.

In this case,顷'and g矽 are appropriately defined tetrahedra 
sharing 顷

Given the rules in the above table, the following two 
lemmas can be derived to compute the ^complex and /}- 
shape for a given value of &

Lemma 1 The /^-complex for a particular value of P 
consists of simplexes in QT(A) iff the {3 is contained in one of 
the /^intervals for three bounding states shown in Table 1.

Lemma 2 The boundary of the (3-shape consists of the 
simplexes in the /3-complex -whose bounding 5/ates are either 
singular or regular for a particular value of /?

Proof: As mentioned previously, the 昌shape is a subset of 
the underlying space of y5-complex. According to the rule 
for transforming simplexes in the quasi-triangulation to a 
complex in Table 1, interior simplexes be enclosed by all 
their incident higher dimensional simplexes except for a 
tetrahedron. In addition, the highest simplex in 3D, i.e. 
tetrahedron, always has interior state. Hence, the interior 

simplexes cannot contribute to the boundaiy of 昌shape. 
Therefore, the bo니ndary of the ^-shape consists of either 
singular or regular simplexes in the /^-complex.

In addition, the boundary of the ^0-shape cannot be directly 
computed by locating the boundary of the Euclidean space 
occupied by the elements in a ^complex. However, Lemma 
2 provides an algorithm to compute the boundaiy of a /3-shape 
correctly and eflBciently from a corresponding ^-complex.

3.3 Euclidean fidelity of y9-shape and ^-complex
Now, the Euclidean fidelity to particle size of /^complex 

is explained. The tz-shape and (好complex have a limitation 
for being used in biological applications since they cannot 
accent for the size difference among particles. In order to 
incorporate the size differences among particles, an extended 
concept called the weighted tz-shape was proposed [9]. The 
weighted “shape is based on the regular triangulation of the 
particles, which is the dual of the corresponding power diagram. 
However, the weighted ghape based on the power diagram 
also has limitations for queries based on Euclidean distance 
metric although they reflect the size variations of atoms at a 
certain level. Fig. 3(a) shows a set of 2D atoms with different 
sizes and the power diagram defined on the atom set. Fig. 
3(b) shows its counterpart for the \bronoi diagram of atoms 
where the distance is defined as the minimum Euclidean 
distance from a point to the boundary of atoms. The dotted 
circle in Fig. 3(a) is a tangent circle which is computed from 
the three atoms (也 and a3 corresponding to a vertex 的 in 
the power diagram. Note that the tangent circle intersects 
with the atom a4. On the other hand, the dotted tangent circle 
in Fig. 3(b) corresponds to the Vbronoi vertex v2 in the

Fig. 3. Discrepancy between power diagram and Vbronoi diagram.
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Vbronoi diagram of atoms and is guaranteed to be intersection- 
free with any otiier atoms. Therefore, the laigest empty circle 
in the atomic structure can easily be found by a simple scan 
through the vertices of the Vbronoi diagram. However, the 
same computation is not well-defined in the power diagram 
and a search, not necessarily local, is necessary.

Goede et al. criticizes that the power cell is not always 
chemically reasonable particularly for bonded atoms due to 
the feet that a power cell may not include the corresponding 
input point [15], Shown in Fig. 4 is an example of the cell 
incl니sion. Let rH and r be the radii of an hydrogen atom H 
and an arbitrary atom, respectively, and be tiie distance 
between the centers of these two atoms. Then, it is easy to 
show that the power cell ofH does not contain the center of 
H, if the following inequality holds. This observation indeed 
indicates the inappropriateness of the weighted c^shape in 
the analysis of m이ecular structure and suggests a desperate 
need for a new consfruct based on ttie \bronoi diagram of 
atoms for the correct analysis of a molecular structure [15,31].

尸>扁詩 (1)

Suppose that the radius of H is 1.2A and there are tiiree 
types of bonding between H and, for example, a carbon 
atom C which correspond to three different values of <7 [18]: 
(a) 1.09A, (b) 1.06A, and(c) 1.08A. Since tiie radius of C is 
known as 1.7A, the power cell of any hydrogen atom does 
not contain die center of the hydrogen regardless of the bonding 
type in nature. Other atoms also frequently lead to similar 
situations.

4. Algorithms for a 么shape and a ^complex

Suppose that a quasi-triangulation is stored in the data 
structure of elWDS. Given a value of & the corresponding 
^-complex and 昌 shape can be extracted from the quasi­
triangulation by Lemma 1 and Lemma 2, respectively. The 
extractions are done by searches among the simplexes whose 
/^intervals contain 及 In our earlier algorithm, a y^-shape was 
computed directly from the Vbronoi diagram of atoms [24] 
and this approach turned out to be memory intensive and

Fig. 4. Cell Inclusion. The power cell of the hydrogen atom does 
not contain the center of the hydrogen while the Vbronoi region 
does contain the center.

inconvenient. The previous algorithm was devised in that 
way due to the lack of understanding of the dual structure 
and the data structure to represent the dual.

Suppose that we want to compute a 伽omplex corres­
ponding to a particular value of p. Then, we have to locate 
all simplexes which contain P within their ^intervals. The 
result of the search for 昌complex may consist of 0-, 1-, 2-, 
and/or 3-cfs and the states of simplexes may be either 
singulai; regular or interior Suppose that we treat each simplex 
as a distinct and a unique entity in the sorted set and 니se the 
start value of the ^intervals of a simplex as the key for the 
sorting. Then, a standard sorting algorithm takes O (£』=() 

md log nid) fijr md dp simplexes in the quasi-triangulation. 
Recall that a simplex has at most three yS-intervals. Suppose 
we want to compute the boundaiy of a 昌아lape. Then, the 
first obvious approach is to compute a ^-complex and remove 
the interior simplexes. A better approach, however, would 
be to do a search of the singular and regular simplexes 
directly on the sorted arrays of 0-, 1-, and 2-cfs. We do not 
need to consider 3-c/s for the search since 3-(ronly contributes 
to the interior.

When a value of g is given, we can search an initial 
simplex (which is either singular or regular)価)from, for 
example, the array fbr vertices VQ via abinaiy search which 
takes O (log | f 의) time. Suppose that there are kv singular or 
regular vertex simplexes defining the boundaiy of a ^-shape. 
Then, the other kv- 1 vertex simplexes are in the consecutive 
neighborhood of ob in the array. Therefore, a linear scan 
from Ob locates all the other vertex simplexes defining the 
boundary of the "shape. Hence, the search tdees <9(log \V 
의 + 左 一 1) time. We do a similar process for the edge and 
face simplexes as well. Hence, the whole search can be done 
in O(log |Fe| + log 砂I + log \F^\ + kv+kE + kF-3) time. If 
we maintain all related simplexes in a sin읺e array of size m 
and the boundary of ；0-shape consists of k simplexes, the 
time complexity is given as 0(하i log m + k).

5. Applications in Molecular Biology

The topology among particles frequently plays a core role 
in many applications. One of the emerging application areas 
of particle systems is the analysis of molecular structure 
since tiie morphology of a molecule has been recognized as 
one of the most important factors which determines the func 
tions of the molecule. Therefore, the ^3-shape and the 
complex can play a key role in solving many problems 
analyzing molecular structure of atomic complexes. Once the 
昌 shape and ^complex are computed for a given value of 0 
for a given atom set A, many analyses related to the structure 
of A can be done very precisely efficiently and conveniently. 
Tb show the capabilities of 昌shape and 昌complex, the 
following examples are provided.

5.1 Molecular Surface Construction
An important geometric measure of a molecule is its 

molecular surface. The computation of molecular surface is 
also important in the study of molecular structure [6,7] and 
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the topology among atoms is the most fundamental part of 
the efficient computation of molecular surface.

Lee and Richards were the first who defined the concept 
of a solvent accessible surface of a protein. Using this concept, 
they were able to compute the free space that the center of a 
probe can move around without touching the protein [25]. 
Richards also initially defined tiie molecular surfece of 
protein [34]. Since then, several computational studies of the 
surfaces on a protein have been conducted.

Connolly later computed the molecular surface of a protein 
to calculate the protein volume, electrostatic potential, and 
interfece surfaces between molecules. The approach was to 
compute some sample points on the molecular surface to 
approximate the true surfece [7], Connolly also presented an 
analytic representation of a molecular surface [6] where he 
pointed out that a molecular surface consists of three types 
of patches: a convex spherical patch, a saddle-shaped toroidal 
patch, and a concave spherical patch.

Once a "-shape is computed, the molecular surface for a 
given probe of size f3 can be easily computed.跄u et al. 
presents the algorithm which is summarized as a lemma 
below [35,36].

Lemma 3 Let a be a simplex in a 昌shape. Then, a 
molecular surfece is define by the following.

• If a is a singular vertex, the complete atom corre­
sponding to ais on the molecular surface.

• If cr is a singular edge, a complete rolling blending 
patch is defined between two atoms corresponding to 
the vertices of a

• If ais a regular edge, a partial rolling blending patch is 
defined between two atoms corresponding to the vertices 
of a

• If a is a singular face, two pieces of triangular link 
patch is defined between three atoms which correspond 
to the vertices of a

• If cis interior, the atoms corresponding to the vertices 
of ado not contribute to the molecular surface.

Corollary 4 Given a fi-shape consisting of k simplexes, 
the molecular surface corresponding to the (3-shape can be 
computed in O(k) time in the worst case.

For the details, [35,36] should be referred to. Since a 

molecular surfece can be computed in a lin^r time with 
respect to the n니mbm of atoms using a /?-shape, the molecular 
surfaces corresponding to a probe with varying size can also 
be efficiently computed. The experiment shows that tiie 
molecular surfaces can be visualized in arealtime-like speed.

However, if a weighted (好shape is used, a problem similar 
to finding the largest empty circle, as shown in Fi으. 3, occurs
[3],  To alleviate the difficulty fbr the weighted cr-shape, the 
atoms have to be enlarged by some amo니nt, the power 
diagram sho니Id be computed again, the regular triangulation 
should be fo니nd, and the corresponding weighted 厅shape 
should be computed. Therefore, if we wantto compute difeent 
molecular surfaces corresponding to different probes, it is 
necessary to compute dififerent power diagrams again and 
again. Bajaj reported a study on the ran응e of probe radius 
which can compute the corresponding molecular surfeces with 
one power diagram [3]. Tb the contrary, the Vbronoi diagram 
of atoms needs to be computed only once regardless of the 
probe radius since the Vbronoi diagram is unique for a set of 
atoms and can be used for any probe.

Experiments have been done via a full implementation of 
the presented algorithm 니sing several protein models available 
from Protein Data Bank (PDB) [32]. Fig. 5(a) shows a protein 
lapm and Fig. 5(b) shows its molecular surface defined by a 
water molecule which is approximated by a probe of 1.4A 
radius. Different colors denote different types of atoms and 
therefore different sizes. Figs. 5(c) and 5(d) illustrate molecular 
surfaces of the same protein corresponding to probes of 
different sizes.

It is important that the three molecular surfaces in Figs. 
5(b), 5(c), and 5(d) are all computed from the three corresponding 
^■shapes which are quickly computed from a sin이e QT(0), 
therefore a single VD(4), of the protein. We also would like 
to note that the number of blending patches in a molecular 
surfece increases as the probe size decreases. For example, 
the number of the blending patches in Fig. 5(b) is much 
larger than that of Fig. 5(d). However, the average size of 
patches in Fig. 5(d) is much larger than that ofFig. 5(b).

5그 Docking Site Extraction
Given two molecules, analyzing interactions between them 

is important for 니understanding their biological interactions. 
The interaction between a protein and a small molecule is indeed 

Fig. 5. Protein model and its molecular surfaces, (a) a protein model (The catalytic Subunit of Camp-dependent Protein Kinase Complexed 
with a Peptide Inhibitor and Detergent, PDB id: 1 apm) (b) a molecular surface corresponding to a probe with 1.4A, (c) a molecular surface 
corresponding to a probe with 2.8A, and (d) a molecular surface corresponding to a probe with 12.6A.
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one of the most important issues in designing new drugs. 
The study of molecular interactions, such as the docking of a 
protein with a ligand or protein folding, can be approached 
from a physicochemical or a geometrical point of view, or 
both [29],

A docking between a protein, called a receptor, and a small 
molecule, called a ligand, usually occurs around depressed 
regions, called docking sites or pockets^ on the surfece of a 
receptor. Since designing a new drug requires finding a small 
chemical which can dock or bind at pockets on a protein, the 
recognition of pockets on proteins is one of the most fundamental 
processes in drug design. Considering ttiat chemical databases 
usually contain millions of chemical data entries, manually 
identifying pockets on the surfece of a protein is time-consuming 
and error-prone. Therefore, the automatic recognition of 
pockets and the evaluation of the binding of a chemical to a 
pocket are rather important in the study of protein-ligand 
docking for the development of new drugs [39].

While the eflforts on the physicochemical approach on this 
issue have been given since the early days of science, efforts 
to understand the geometry perspective of biological systems 
have started only very recently [11,17,25,27]. In the repre­
sentation of the surfece of an atomic structure, it is no doubt 
to say that 律shape is one of the most powerful tools. Kim et 
al. [19] reported an algoritiim to extract depres앙ed regions 
on the boundaiy of a protein by using two ^-shapes defined 
by small and large Rvalues. The ^-shape defined by a small 
P value is called an inner ”~shape and one defined by a large 
"is called an outer shape. We observed that the diflference 
between the two ^-shapes can define pockets of a given 

protein. In addition, fbr each edge of the outer #shape, there 
is zero or one depressed region on the boundaiy of the protein. 
When an edge of the outer 序 shape coincides with one of the 
inner ^-shape, obviously no pocket is defined.

Fig. 6 shows the procedure of the pocket recognition. 
Shown in Fig. 6(a) is the input protein (PDB ID: 1 fkg) 
displayed by its molecular surface. Figs. 6(b) and 6(c) are 
the inner and outer 律shapes, respectively. The two ^-shapes 
are overlapped in Fig. 6(d). The outer shape, in this 
example, is when ” is co and therefore it corresponds to the 
convex hull of the atoms. Note that a user can determine 
appropriate Rvalues for inner and outer ”■shapes as a parameter 
of the algorithm. Fig. 6(e) shows subdivided regions on the 
boundaiy of the inner ^-shape and 6(f) shows the extracted 
pocket.

5.3 Mass Property Computation

Once a >0-shape and the corresponding ^complex are 
given for a molecule, various analyses about the mass 
properties on the m이ecule can be done rather easily and 
efficiently. Vblume and surface area of the union of spheres 
can be eflBciently computed by yS-complex. Edelsbrunner 
showed that the volume of the union of atoms can be 
efficiently and correctly computed by referring to the inter­
sections among atoms via the weighted cu-complex when a 
is zero [10]. Liang et al. applied this property to the molecular 
volume and area computation [26]. Since the weighted a- 
shape is identical with the 昌shape when a=(3= 0, the same 
method can be used with ttie >0-shape. If the corresponding

(d) (e) (f)

Fig. 6. Pocket extraction procedure: (a) a protein (PDB ID: 1 fkg), (b) inner "-shape, (c) outer /Xshape, (d) overlap of inner and outer p- 
shapes, (e) subdivided regions on the boundary of the inner/J-shape, and (f) extracted pocket.
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Ta미e 2. The v이ume (unit: A3) and the surfece area (unit: A2) of van der Waals models of the ten test proteins and their respective 
computation time (unit: sec). (Environment: Intel 3.2 GHz CPU, 2GB RAM and Windows XP OS)

Model
legd Ihpv lf6o lke5 2por

No. of atoms 604 1551 2154 2269 2306
Volume (A) 6,330.00 16,957.45 22,879.69 24,673.51 24,923.43

Surf, area (B) 7,393.25 20,388.04 26,930.60 29,400.41 29,980.04
Comp, time (A) 0.0060 0.0110 0.0177 0.0200 0.0171
Comp. time (B) 0.0057 0.0109 0.0175 0.0198 0.0169

^complex is given, it can be used to compute the volume of 
the union of tiie van der W代als atoms of the molecule. The 
topology information among the simplexes in the ^shape 
and ^complex are used to set up the set operations for the 
computation. Table 2 shows flie computation results of the 
surfece area and the volume of van der Waals models for the 
protein and their respective computation times. Note that the 
number of atoms are also given in the table. The computation 
time was measured after the /^-shapes and ^complexes are 
computed for the models.

6. Conclusions

In this paper, we discussed the £«hape and >0-complex 
which generalize the well-known os-shape and cr-complex 
(also their weighted counterparts as well) for a set of spheres 
with arbitrary sizes. Also, we showed that a number of 
important bio-problems such as the molecular surface 
construction, pocket extraction, and surface area and volume 
computation of a molecule can be efficiently solved via the 
concept of)0-complex. After computing the Vbronoi diagram 
of spheres, we transform the Xbronoi diagram to a quasi- 
triangulation which is the topological dual of the Wonoi 
diagram. Then, an analysis for yS-intervals is done with the 
quasi-triangulation to produce a simple rule to search in tiie 
intervals to compute the ?-complex as well as the >5-shape.

The quasi-triangulation can be computed from the Vbronoi 
diagram of spheres in O (m) time in the worst case. Then, 
the presented theory and algorithms enable us to compute 
both)0-complex and >5-shape from the sorted array of 
simplexes in O (log m + k) time in the worst case, where the 
quasi-triangulation has m simplexes and the y3-complex or 

shape has k simplexes, respectively.
Eventtiough we mostly referred to applications for analyzing 

the structure of molecules such as proteins, the theoiy of 昌 

shape and 号complex will be equally useful for other areas 
such as physics, chemistry, computer graphics, and geometric 
modeling where one of the fundamental issues is the proximity 
among particles.
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