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Abstract — To understand the structure of molecules, various computational methodologies have been extensively investigated
such as the Voronoi diagram of the centers of atoms in molecule and the power diagram for the weighted points where the
weights are related to the radii of the atoms. For a more improved efficiency, constructs like an a-shape or a weighted «-shape
have been developed and used frequently in a systematic analysis of the morphology of molecules, However, it has been
recently shown that a-shapes and weighted o-shapes lack the fidelity to Euclidean distance for molecules with polysized
spherical atoms. We present the theory as well as algorithms of Zshape and Scomplex in R? which reflects the size difference
among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and
therefore will have a significant impact on applicativns based on particles, in particular in molecular bivlogy. The theory will

be equivalently useful for other application areas such as computer graphics, gcometric modeling, chemistry, physics, and

material science.
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1. Introduction

The topology among particlcs frequently plays a core rolc
in many applications. In particular, particlcs are important in
computer graphics, GIS, biometrics, cl¢. An immediate
example is to interpolate a surface from a point cloud where
the proximity information among neighboring points is
necessary. One of the emerging application areas of particle
systems is stmictural molecular biology since the morphology
of a molecule is one of the most important factors to
determine the functions of the molecule.

The topological characleristics among particles have been
long time questions in mathematics, scicnee and engineering,
Due to the lack of a proper representation, in old days, the
studies on the topological characteristics among particles
were primarily done by either investigating all pairwise com-
parisons or employing a simple grid or a bucket. In 1967,
Bernal and Finney used the Voronoi diagram of points, where
the points are the centers of spheres, to analyze the packing
characteristics of spherical particles such as the distributions
of particle density, the number of Voronoi faces for Voronoi
cells, and the number of Voronoi edges for Voronoi faccs.
[4]. Since then, many studics have followed in the studics of
geometric and topological characteristics of molecular systems
and the Voronoi diagram of points has been extensively used.
In 1974, Richards used the Voronoi diagram of atom centers

*Corresponding author:
Tel: +82-2-2220-0472
Tax: +82-2-2292-0472
F-mail; dskim¢@hanyang.ac kr

to estimate the volume of the space that cach atom or a
group of atoms in protein vccupies, ete. |33]. Since then, wntil
today, there have been numerous studies in physics,
chemistry, biology, and various other fields which use the
Voronoi diagram of atom centers [1,8,30.40.42].

While the size differences among atoms are significantly
meaningful, the Voronoi diagram of atom centers does not
reflect the size differences. Tn 1982, Gellatly and Finney
proposed to use a radical plane as the bisector between two
atoms so that the space occupied by a set of polysized atoms
15 properly tesscllated [14]. This transformation is later named
the power diagram of atoms by Aurcnhammer [2] since the
distance metric of the tessellation using radical planes is
indeod a power distance. Since then, the power diagram has
been very popular in the analysis of svstems of polysized
particles in science and engineering [16,28 37 41].

On the other hand, the concept of a-shape in R was
proposed as a generalization of the convex hull of a point sct
and was used to define the shape of the point set [12,13].
The idea was based on a transformation from the Delaunay
triangulation which is a topological dual of the Voronoi diagram
of points [13]. Even though it is powerful for points, the a-
shape does not reflect the size differences among spherical
particles at all as it is based on the Voronoi diagram of points.
Hence, the concept was later extended to a weighted o-
shape which is based on the regular riangulation, the dual of
power diagram [9]. However, it tums out that the power diagram
still has limitations for the queries based on Euclidean distance
metric.

Recently (he theory of Sshape and fFcomplex, which are
respectively generalizations of the ordinary o~shape and «-
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Fig, 1. The fshapes for a protein via different Svalues: (a) a protein (PDB TD: 1v4f) consisting of 133 atoms (difterent colors denote
diffcrent atoms 84 C’s, 28 O’s and 21 N’s), (b) the f#shapes with #=10, (c) 8=0.7A, (d) A= 14A, (c) = 5A, and (f) #=50A.

complex, was proposed and used as a powerful tool for
understanding proximity among particles [24,38]. The £
complex s based on the quasi-triangulation which is the
dual strcture of the Voronoi diagram of spheres (also known
as an additively weighted Voronoi diagram). We believe that
the /shape will be more applicable to many problems based
on Euclidean distance metric. Fig. 1 shows different shapes
with respect to different B-values from the protein shown in
Fig. 1(a) which is downloaded from the Protein Data Bank
(PDB) [32].

This paper is organized as follows. In Section 2, we briefly
review the Voronoi diagram of spheres and its dual structure
called a quasi triangulation, which are the basis of the £
complex. Section 3 presents the theory of Afamily consisting
of phull, fshape, and Scomplex. Section 4 explains the
algorithms to compute a Scomplex and its data structure. In
Section 5, we provide several applications of Scomplex to
biological problems such as the molecular surface construction,
pocket extraction and various mass property computations.
Finally, we conclude the paper.

2. Related works

The theory of Scomplex is a generalization of the ordinary
a-complex. The a-complex is computed from the Delaunay
triangulation which is the dual structure of the Voronoi diagram
of points. In a similar method, S-complex is computed from
the quasi-riangulation which is the dual structure of the
Voronoi diagram of spheres. In this section, we describe the
Voronoi diagram of sphercs, frequently known as an additively
weighted Voronoi diagram, and its dual called a quasi-
triangulation.

2.1 Yoronoi diagram of spheres and quasiHriangulation

A Voronoi diagram VIXS) for the sphere set S is defined
as VD(S) = {VC(s;),VC(s2), ..., VC(s,)} where the connectivity
among the cntities are appropriately represented. Associated
with each sphere s, € S, there is a corrcsponding Foronoi
cell (or region) V((s;) for s;, where VC,= {p | dist (p, c) — r;,
<dist( p, c)—r, i #J}, where dist ( p, ¢) denotes Euclidean
distance between points p and ¢. In R*, VD(S) consists of

VV: {Vr s v?’:" “-}’ EV: {6{ ’ e?},’, "'}, FV: {fly’ f.:."( » '"}’
and ' ={c!, c} , ... ¢/} which denote the sets of Voronoi
vertices, Voronoi edges, Voronoi faces, and Voronoi cells (or
regions) in the Voronoi diagram VIXS), respectively. From
the definition of a Voronoi diagram, a Voronoi vertex v is
the center of an empty sphere tangent to four nearby atoms,
while a Voronoi edge &' is defined as a locus of points equi-
distant from the surfaces of three surrounding atoms. In
addition, a Voronoi face /" is the surface defined by two
neighboring atoms. Note that the face is always a hyperbolic
surface and any point on the face is equi-distant from the
surfaces of both atoms. For more details, readers are recom-
mended to refer to [20,21,22].

In the cases of the Voronoi diagram of points or the power
diagram, their respective dual complexes are well-defined as
the Delaunay and the regular triangulations. However, the
dual of the Voronoi diagram had not been discussed uniil it
was recently reported by Kim et al. [23]. A quasi-triangulation
QT(S) is defined as QT(S)= {7, B, ..., A}, A;, ...} where 7
and A denote a tetrahedron and a triangle, respectively, which
are the dual cells in the quasi-triangulation QT(S), where the
topology is appropriately represented. Note that a dual cell
in QT(S) may degenerate to a triangle [23].

Let V9= {vf, V], o8}, EO= {eﬁg, of L F={ff,
fZQ, .}, and C¥= {c?, c?, ..} denote the sets of vertex
simplexes, edge simplexes, face simplexes, and cell simplexes
in QT(S), respectively. Then, a quasi-triangulation QT(A) for
an atom sct 4 can be conveniently represented as QT(A)
=(V9, E2, FC, CY). A Voronoi diagram VD{4) is mapped
to a quasi-triangulation QT(A) as follows.

» A Voronoi cell ¢ € C¥ is mapped to a vertex 2 e V9.
The vertex v¢ comresponds to the center of a generalor
atom g; corresponding to a Voronoi cell ¢,

» A Voronoi face /¥ e F¥ is mapped to an edge ¢¢ ¢ E©,
The edge ¢ is a line segment bounded by two 0.

+ A Voronoi edge ¢ € EV is mapped to a face /¢ ¢ F?.
The face /¢ is a triangle bounded by three ¢’s.

* A Voronoi veriex 0¥ e ¥V is mapped to a cell ¢¢ € C2.
The cell c¢ is a tetrahedron bounded by four /<’s.
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The dual structure Q1(4)} is called a quasi-triangulation
since it is not always a valid triangulation of R? space. Recall
that the topological duals of the Voronoi diagram of points
and the power diagram are called the Delaunay triangulation
and the regular tnangulation, and both triangulations are
simplicial complexes which tessellate the convex hull of
input points by a set of tetrahedra. It they do intersect, two
tetrahedra in these triangulations intersect each other at a
vertex, an cdge, or a triangular face. In (O1{A4), however, this
property is not guaranteed.

2.2 InterWorld Data Structure (IWDS) for quasi-
triangulation

Since a quasi-triangulation QT{() is not a simplicial
complex in general, it is usually stored as a primal structure,
1.e. the Voronoi diagram of the atom set 4 [5]. Recently, a
method has been proposed to directly store QT(A) in a set of
simple arrays which is called an JnterWorld data structure,
abbreviated as /WDS [23). [t was shown in [23] that the
IWDS compactly stores the topology of QT{4) with a
guaranteed query efficiency.

[n [23], it was shown that there are three kinds of
anomalies which cause the violation of the definition for
simplexes (o form a complex: a multiplicity anomaly, a
singularity anomaly, and a degeneracy anomaly. By coping
with thc anomalics in the quasi-triangulation, which are
surprisingly less frequent, the compact IWDS is devised (o
store the topology of a quasi-triangulation as a straightforward
extension of the array-based data structure for a simplicial
complex [23]. IWDS maintains one more relatively small
array in addition to the aray for simplicial complexes: a
gate array. The multiplicity anomaly and the degeneracy
anomaly are handled by appropriatcly adjusting the vahics
in the elements of arrays and the singular anomaly is
handled by the gate array signifying the singularity. For the
details, please refer to [23].

TWDS stores the complete information about the topology
of QT(S) in the most compact way. Tt can be used for both
representing the topology of QT(S), or equivalently VIXS),
in a code and storing QT(S) or VD(S) in a file. When we use
it in codes, however, we slightly extend IWDS to facilitate a
more convenient manipulation of the simplexes. The extension
called an extended IWDS, denoted by /WS, is done by
introducing two more arays to IWDS: edge and face arrays.
In eTWDS, the gate array is not necessary any more since
the gate information can now he stored in the corresponding
edge.

In eIWDS, the entilies of quasi-inangulation i a neigh-
borhood are interconnected in a straight forward manner. A
vertex has a pointer to one of the incident edges, and an edge
has a pointer to ong of the incident faces and two pointers to
its two vertices. A riangular face has two pointers to the two
tetrahedra which share the face and (hree poinlcrs to the
three edges bounding the face. A tetrahedron has four poinlers
to the four bounding triangular faces. With eTWDS, any pair
of two adjacent entities in QT(S) can be traversed with at
most three hops via pointers.
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3. pfamily

Recently the theory of fcomplex was proposed and used
as a powerful tool for understanding proximily among paracles.
Although the a-complex has been widely used in variety of
applications duc to its theoretical beauty and simplicity, it
docs not property account for size difference among given
spheres from the viewpoint of Euclidean distance. In
comparison, the Fcomplex fully considers the Fuclidean
fidelity to particles sizes. First, in this section, we explain the
Afamily which is composed of fhull, fFshape, and 5
complex. Then, we provide a great asset of Scomplex in the
Euclidean metric.

3.1 fhull and Sshape

Conceptually, a Fhull is the gencralization of an a-hull
and can be similarly described. The point set, from which
an a-hull 1s defined, is now replaced by a set of three
dimensional spherical balls. As for the case of a-hulls, think
of R? filled with Styrofoam and some spherical rocks
scattered around inside the Styrofoam. The radii of the
spherical rocks vary. Then, carving out the Styrofoam with
an omnipresent and empty spherical eraser with the radius
of Bwill tesult in a Fhull. Since the eraser is omnipresent,
there can be interior voids as well. The molecular surface,
used in biology quite a long time, is indeed equivalent to the
Bhull of the molccule [6,7]. Figs. 2(a) and 2(d) show an
identical atom set in the plane and two Shulls or molecular
surtaces corresponding to two erasers with different sizes.
Let us call these crasers the Sprobe.

Suppose that we have a fhull of an atom set A. Then,
we straighten the surface of the Ahull by substituting
straight edges for the circular ones and trianglcs for the
spherical caps where the vertices arc the centers of the atoms
contributing to the Fhull. Then, the straightened object is
the fshape of A. Figs. 2(b) and 2(e) illustratc two /Fshapes
corresponding (o the two Shulls in Figs. 2(a) and 2(d),
Tespectively.

3.2 fecomplex

Suppose that 4 < A where [A]=k r | where & is the
dimension of the space for the centers of atoms « € A4 are
defined. Notc that £+ 1 center points define &-dimensional
simplex due (o the general position assumption. Let b be
the smallest empty open fprobe whose boundary & b;
touches all atoms of A from outside. Let o7 be the radius of
b;. Hence, 2 <| A | <4 in the three-dimensional space since
1 <k<3. The case of £=0 is defined specially since b in
this case trivially rcduces to a point and the comresponding
atom always maps 10 a veriex simplex.

Definition 1 For 1 k<3 and0< <0, let T “,» be the
set of k-simplexes o in the ﬁ{(:mplex for wh:ch a fprobe
hi is empty and p; < p. Especially, X 0 g — C for any value
of B, where C={cy, ca, ..., G} IS the set of atom centers.
Then, a ﬁ-comp/cx Cy is defmed as Cp={ci1, of|Cj €
LH;,A' c A,0<k<3).
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Fig, 2. Shulls, Bshapes and Scomplexes for the atoms in [R?: (a) ten two-dimensional atoms and the Ahull corresponding to a small
probe with A, (d) the Ahull of the same atom set comresponding to a large Fprobe with % where B < /3, (b) and (e) the Bshapes
corresponding {0 5, and £, and (¢} and (f} the Fcomplexes by /3 and 5.

Therefore, a f-complex Cy is defined as the set of either £-
simplexes g in 25;, 5 or those A-simplexes which bound (k +
1)-simplexes in Cp. In addition, each simplex in a fcomplex
Cymay take one of the following three states depending on
the value of 4.

Definition 2 4 simplex o in a f-complex Cg takes one of

the following three bounding states.

o singular: & belongs to the boundary of Bshape S; and
does wnot bound any higher-dimensional simplex in the
corvesponding fcomplex C.

s regular: ¢ belongs to the boundary of fshape Sp and
bounds at least one higher-dimensional simplex in the
corvesponding prcomplex Cp.

» interior: & does not belong to the boundary of f-shape
Sp, and o'is the intersection between neighboring simplexes
of higher dimensions in the corvesponding B-complex Cg,

The Scomplex of an atom set A is a subset of simplexes
in the quasi-triangulation of A where the volume union of
the simplexes in the Acomplex is identical to the corresponding
[-shape. Shown in Figs. 2(c) and 2(f) are the S<omplexes
of the fshapes in Figs. 2(b) and 2(d), respectively. As shown
in the figure, each Ashape is tessellated into a set of simplexes.
A simplex o in a fcomplex takes one of the above three
bounding states [38]. Note that a simplex has one of these
states if it belongs to a Scomplex. Note that S-shape is
defined as a subset of the underlying space of all the simplexes
in pcomplex where the underlying space of simplexes
means the union of the spaces occupied by the simplexes.
Therefore, we can say that the S-shape can be obtained from
the comresponding Scomplex and the Scomplex fully contains
the information of Sshape.

Also, a simplex can be one of the following two situations
depending on the condition of the smallest possible tangent
sphete Z which is simultaneously tangent to the atoms corres-
ponding to the vertices of the simplex from outside.

Definition 3 4 simplex o is classified according to the
Jotlowing intersection cases.
* & is unattached if there is no intersection between Z and
any atom in 4.
- o is attuched if there is an intersection hetween Z and
some atom i A,

The valid intervals of /3 values for each simplex are shown
in Table 1. Let CH{4) denote the convex hull of whole
atoms in the atom set A, and CH(C) denote the convex hull
of the centers of all atoms in A. In addition, let CH(4)
denote the polytope defined by the centers of atoms which
contribute to CH(4). When there is a cylindrical boundary
between a pair of atoms in CH{(4), a corresponding edge is
defined in CH(A) between the centers of the two atoms.
When there is a triangular boundary for a triplet of atoms in
CH(A), a corresponding triangle is defined in (' (4) among
the centers of the three atoms. Note that CH (4) is not
identical to CH(C) in general.

All simplexes ;€ QT(4) have their respective intervals
according to the singular, regular, or interior states in the
complex Cg o is a simplex of the fcomplex Cy iff fis
contained In this interval. A regular simplex belongs to the
boundary of the interior of Ashapes. In a fcomplex, a regular
simplex bounds some higher-dimensional simplexes while a
singular simplex does not. The interior simplexes triangulate
the interior of Sshapes.

The meaning of the rules in Table 1 can be explained as
follows. First, a tetrahedron simplex o, Case | in the table, is
defined and remains as interior after a minimum empty sphere
tangent to a set of four atoms in 4 is found. Note that & can
be only interior, if it is an element of a S-complex.

Case 2 denotes an edge or a face simplex which is not on
the boundary of the convex hull and unattached and needs a
little bit of explanation. The other cases can be similarly
explained. Let A= {a, a)}, 1 <i,j<n, i=}, A'=AU {a),
and A"=A v {ap}, i#j# k=1 Suppose that o and o are
two triangles among others incident to an edge simplex o
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Table 1. The set of rules thal transtorms simplexes in the quasi-triangulation to fcomplex

Case Bounding Statc
Singular Regular Interior

Tetrahedron 1 (P4 ]

g 0 ('H(4), Unatlached 2 (p5. 4;) (44, 113 ) (723, ™)

¢ & ('H(4), Atached 3 (- 7113) (723, >]
Edge or triangle e aCH {1}. Unattached 4 (py, 1451 (gl

€ & CFi(4), Attached 5 {t7,%)

Isolated triangle ) (py, P51
Vertex £ 0 CH{A) 7 |-, 471 (413, 73} (3.}

g 0 CHIA) 8 [~o, 1y ] (45, o}

In addition, suppose that 0 < p; < p3«< o, and the radius p
corresponding to any other triangle incident to o7 satisfies
pr<p<pgp. Then, t; = pzand Fa = p;-.

Suppose p; < < 3. Then, an empty Sprobe can keep
its tangency with the two atoms ¢, and ;. This means that
the B-probe does not interscct with any other atom in the
atom set A. Hence, the edge oy is defined in the Scomplex
while no triangle incident to the edge is defined. The cdge
of A is singular since it exists as a singlcton. Note (hat,
when the value of B is in this range, neither o nor - is a
triangle in the S-complex yet.

Suppose that £; <3< T4, Then, obecomes a triangle
and is an element in fcomplex while the other tiangle o
is not defined yet in Zcomplex. Since the edge o7 bounds a
friangle o in this case, the edge is called regular. If
Ay < fB< oo, the edge simplex o A is in the interior of £
complex because the two incident triangles o and oj- are
now the elements of Fcomplex and the edge is shared by
the two triangles. Note that the edge a7 A does not even
existif B< pa.

Suppose that a; A is now a face simplex which can be
similarly explained to the previous edge case. Tn other words,
a3 A 18 a 2-o. Then, an explanation similar to the above can
be made.

In this case, gy and ;- are appropriately defined tetrahedra
sharing .

Given the rules in the above table, the following two
lemmas can be derived to compule the Scomplex and f#
shape for a given valuc of £

Lemma 1 The frcomplex for a particular value of 8
consists of simplexes in QT(A) iff the Bis contained in one of
the B-intervals for three bounding states shown in Tuble 1.

Lemma 2 The boundary of the fFshape consists of the
simplexes in the f-complex whose bounding states are cither
singular or regular for a particular value of £

Proof: As mentioned previously, the S-shape is a subset of
the underlying space of fFcomplex. According to the rule
for transforming simplexes in (he quasi-triangulation to a 3
complex in Tablc 1, interior simplexes be enclosed by all
their incident higher dimensional simplexes except for a
tetrahedron. In addition, the highest simplex in 3D, i.e.
tetrahedron, always has interior state. Hence, the interior

simplexes cannot contribute to the boundary of fFshape.
Therefore, the boundary of the Sshape consists of either
singular or regular simplexes in the fcomplex.

In addition, the boundary of the Sshape cannot be directly
computed by locating the boundary of the Euclidean space
occupied by the elements in a fecomplex. However, Lemma

2 provides an algorittim to compute the boundary of a Fshape
correctly and efficiently from a corresponding fcomplex.

3.3 Euclidean fidelity of S-shape and S-complex

Now, the Euclidean fidelity to particle size of foomplex
is cxplamed. ‘The a-shape and ¢~complex have a limitation
for being used in biological applications since they cannot
account for the size difference among particles. In order to
incorporate the size diffcrences among particles, an extended
concept called the weighted er-shape was proposed [9]. The
weighted a-shape is based on the regular triangulation of the
particles, which is the dual of the corresponding power diagram.
However, the weighted a-shape based on the power diagram
also has limitations for queries based on Euclidcan distance
metric although they reflect the size vanations of atoms at a
certain level. Fig. 3(a) shows a sct of 21D atoms with different
sizes and the power diagram defined on the atomn set. Fig.
3(b) shows its counterpart for the Voronoi diagram of atoms
where the distance 1s defined as the minimum Euclidean
distance from a point (o the boundary of atoms. The dotted
circle in Fig, 3(a) is a tangent circle which is computed fom
the three atoms g, ¢, and ¢; corresponding to a vertex v, in
the power diagram. Notc that the tangent circle intersects
with the atom a;. On the other hand, the dotted tangent circle
in Fig. 3(b) corresponds to the Voronoi vertex v, in the

(a) (b)

Fig. 3. Discrepancy between power diagram and Voronoi diagram.
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Voronoi diagram of atoms and is guaranteed to be interscction-
frec with any other atoms. Therefore, the largest empty circle
in the atomic structure can easily be found by a simple scan
through the vertices of the Voronoi diagram. However, the
same computation is not well-defined in the power diagram
and a search, not necessarily local, is necessary.

Goede et al. criticizes that the power cell is not always
chemically reasonable particularly for bonded atoms due to
the fact that a power cell may not include the corresponding
input pomt [15]. Shown in Fig. 4 is an example of the cell
inclusion. Let ry and r be the radii of an hydrogen atom H
and an arbitrary atom, respectively, and d be the distance
between the centers of these two atoms. Then, it is easy 1o
show that the power cell of H does not contain the center of
H, if the following inequality holds. This cbservation indeed
indicates the inappropriateness of the weighted o-shape in
the analysis of molecular structure and suggests a desperate
need for a new construct based on the Voronoi diagram of
atoms for the correct analysis of a molecular structure [15,31].

r>rtd 1

Suppose that the radius of H is 1.2A and there are three
types of bonding between H and, for example, a carbon
atom C which comrespond to threc diflerent values of ¢ [18]:
(a) 1.094, (b) 1.06A, and (c) 1.08A. Since the radius of C is
known as 1.7A, the power cell of any hydrogen atom does
not contain the center of the hydrogen regardless of the bonding
type in nature. Other atoms also frequently lead to similar
situations.

4. Algorithms for a S-shape and a Scomplex

Suppose that a quasi-triangulation is stored in the data
structure of efWDS. Given a value of £ the corresponding
Bcomplex and Bshape can be extracted from the quasi-
triangulation by Lemma 1 and Lemma 2, respectively. The
extractions are done by searches among the simplexes whose
Sintervals contain 4 In our earlicr algorithm, a Ashape was
computed directly from the Voronoi diagram of atoms |24]
and this approach tumed out to be memory intensive and

PD

Fig, 4. Cell Inclusion. The power ccll of the hydrogen atom does
not contain the cenler of the hydrogen while the Voronoi region
does contain the center.

mmconvenient. The previous algorithm was devised in that
way due to the lack of understanding of the dual structure
and the data structure to represent the dual,

Suppose that we want to compute a Scomplex corres-
ponding to a particular value of £ Then, we have to locate
all simplexes which contain S within their fintervals. The
result of the search for Scomplex may consist of (-, 1-, 2-,
and/or 3-0’s and the states of simplexes may be either
smngular, regular or interior. Suppose that we treat each simplex
as a distinct and a unique entity in the sorted set and use the
start value of the Fintervals of a simplex as the key for the
sorting. Then, a standard sorting algorithim takes O (Zf,=0
my log my) for my d-o simplexes in the quasi-triangulation.
Recall that a simplex has at most three Sintervals. Suppose
we want to compute the boundary of a Fshape. Then, the
first obvious approach is to compute a Scomplex and remove
the interior simplexes. A better approach, however, would
be to do a search of the singular and regular simplexes
directly on the sorted amays of (-, 1-, and 2-o's. We do not
need to consider 3-07s for the search since 3-oronly contributes
to the interior.

When a value of £ is given, we can search an initial
simplex (which is either singular or regular) oy from, for
example, the array for vertices J© via a binary search which
takes O (log |F"¥|) time. Suppose that there are &, singular or
regular vertex simplexes defining the boundary of a fshape.
Then, the other 4 — 1 vertex simplexes are in the consecutive
neighborhood of ¢ in the array. Therefore, a linear scan
from & locates all the other vertex simplexes defining the
boundary of the S-shapc. llcnce, the search takes O{log |V
A+ & —1) time. We do a similar process for the edge and
face simplexes as well. Hence, the whole search can be done
in O(log |9+ log |EC| + log |F¥| + ky + kg + kz—3) time. If
we maintain all related simplexes in a single array of size m
and the boundary of Bshapce consisls of & simplexes, the
time complexity is given as Q(m log m + k).

5. Applications in Molecular Biology

The topology among particles frequently plays a core role
in many applications. One of the emerging application areas
of particle systems is the analysis of molecular structure
since the morphology of a molecule has been recognized as
one of the most important factors which determines the func
tions of the molecule. Therefore, the Sshape and the 5
complex can play a key role in solving many problems
analyzing molecular structure of atomic complexes. Once the
Bshape and Scomplex are computed for a given value of S
for a given atom set A, many analyses related to the structure
of A can be done very precisely, efficiently and conveniently.
To show the capabilities of fshape and Scomplex, the
following examples are provided.

5.1 Molecular Surface Construction

An important geometric mcasure of a molecule is its
molecular surface. The computation of molecuiar surface is
also important in the study of molecular structure [6,7] and
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the topology among atoms is the most [undamental part of
the efficient computation of molecular surface.

Lee and Richards were the first who defined the concept
of a solvent accessible surface of a protein. Using this concept,
they were able to compute the free space that the center of a
probe can move around without touching the protein [25).
Richards also initially detined the molccular surlace of
protein [34]. Since then, several computational studies of the
surfaces on a protein have been conducted.

Connolly later computed the molecular surface ol a protein
to calculate the protein volume, electrostatic potential, and
interface surfaces between molecules. The approach was to
compute some sample points on the molecular surface 10
approximate the true surface [7]. Connolly also presented an
analytic represcntation of a molecular surface [6] where he
pointed out that a molecular surface consists of three types
of patches: a convex spherical patch, a saddle-shaped toroidal
patch, and a concave spherical patch.

Once a Bshape is computed, the molecular surface for a
given probe of size £ can be easily computed. Ryu et al.
presents the algorithm which is summarized as a lemma
below [35,36].

Lemma 3 Let o be a simplex in a fFshape. Then, a
molecular surface is define by the following.

o lf o is a singular vertex, the complete atom corre-
sponding to o'is on the molecular surfoce.

¢ lf o is g singular edge, a complete rolling blending
patch is defined between two atoms corresponding to
the vertices of o.

¢ if o is a regular edge, a partiad rolling blending parch is
defined between two atoms corvesponding 1o the vertices
of o

o If o is a sinqular face, two pieces of wriangular link
patch is defined between three atoms which corvespond
to the vertices of &.

¢ If 6 is interior. the atoms corvesponding to the vertices
of ado not contrituite to the molecular surface.

Corollary 4 Given a [Fshape consisting of k simplexes,
the molecular swrface corvesponding to the Bshape can be
computed in O(k) time in the worst case.

For the details, [35,36] should be referred to. Since a
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molccular surface can be computed in a linear time with
respect to the number of atoms using a Sshape, the molecular
surtaces comresponding to a probe with varying size can also
be efficiently computed. The experiment shows that the
molecular surfaces can be visualized in a realtime-like speed.

However, if a weighted a~shape is used, a problem similar
to finding the largest cmpty circle, as shown in Fig. 3, ocours
[3]- ‘o alleviate the difficulty for the weighted c-shape, the
atoms have to be enlarged by some amount, the power
diagram should be computed again, the regular triangulation
should be tound, and the corresponding weighted B-shape
should be computed. Therefore, it we want to compute different
molecular swfaces corresponding to difterent probes, it is
necessary 1o compute different power diagrams again and
again. Bajaj reported a study on the range ot probe radius
which can compute the comesponding molecular surfiaces with
onc power diagram [3]. To the contrary, the Voronoi diagram
ol atoms needs to be computed only once regardless of the
probe radius since the Voronoi diagram is unique for a set of
atoms and can be used for any probe.

Expcriments have been done via a full implementation of
the presented algorithm using several protein models available
from Protein Dala Bank (PDB) [32]. Fig. 5(a) shows a protein
lapm and Fig. 5(b) shows its molecular surface defined by a
water molecule which is approximated by a probe of 1.4A
radius. Diflcrent colors denote different types of atoms and
therefore different sizes. Figs, 5(c) and 5{(d} illustrate molecular
surfaces of the same protein corresponding to probes of
different sizes.

It is important that the three molecular surfaces in Figs.
5(b), 5(c). and 5(d) are all compuited firom the three corresponding,
fshapes which are quickly computed from a single QT(4),
therelore a single VD{A), of the protein. We also would like
to note that the number of blending patches in a molecular
surface increases as the probe size decreases. Ior cxample,
the number of the blending patches in Fig. 5¢(b} is much
larger than that of Fig, 5(d). However, the average size of
patches in Fig. 5(d) is much Jarger than that of Fig, 5(b).

5.2 Docking Site Extraction

Given two molccules, analyzing interactions between them
is important for understanding their biological interactions.
"The interaction between a protein and a small molecule is indeed

(a) (b)

{e) (d)

Fig. 5. Prolein model and its molecular surfaces. (a) a protein model (The catalytic Subunit of Camp-dependent Protein Kinase Complexed
with a Peptide Tnhibitor and Detergent, PDB id: Tapm) (b) a molecular surface corresponding (o a probe with 1.4A, (c) a molecular surface
corresponding to a probe with 284, and {d) a molccular surface corresponding to a probe with 12.6A,
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one of the most important issues in designing new drugs.
The study of molecular interactions, such as the docking of a
protein with a ligand or protein folding, can be approached
from a physicochemical or a geometrical point of view, or
both [29].

A docking between a protein, called a recepror, and a small
molecule, called a /igand, usually occurs around depressed
regions, called docking sites or pockets, on the surface of a
receptor. Since designing a new drug requires finding a small
chemical which can dock or bind at pockets on a proteir, the
recognition of pockets on proteins is one of the most fundamental
processes in drag design. Considering that chemical databases
usually contain millions of chemical data entries, manually
identifying pockets on the surface of a protein is time-consuming
and error-prone. Therefore, the automatic recognition of
pockets and the evaluation of the binding of a chemical to a
pocket are rather important in the study of protein-ligand
docking for the development of new drugs [39].

While the efforts on the physicochemical approach on this
issue have been given since the early days of science, efforts
to understand the geometry perspective of biological systems
have started only very recently |11,17,25,27). In the repre-
sentation of the surface of an atomic structure, it is no doubt
to say that #-shape is one of the most powerful tcols. Kim et
al. [19] reported an algorithm to extract depressed regions
on the boundary of a protein by using two #shapes defined
by small and large $ values. The f-shape defined by a small
Bvalue is called an inner S-shape and one defined by a large
Bis called an outer fshape. We observed that the difference
between the two fshapes can define pockets of a given

protein. In addition, for each edge of the outer Fshape, there
is zero or one depressed region on the boundary of the protein.
When an edge of the outer S-shape coincides with one of the
inner Sshape, obviously no pocket is defined.

Fig. 6 shows the procedure of the pocket recognition.
Shown in Fig. 6(a) is the input protein (PDB ID: 1 fkg)
displayed by its molecular surface. Figs. &(b) and 6(c) are
the inner and outer Sshapes, respectively. The two S-shapes
are overlapped in Fig. 6(d). The outer fshape, in this
cxample, is when S is « and therefore it corresponds to the
convex hull of the atoms. Note that a user can determine
appropriate /3 values for inner and outer Sshapes as a parameter
of the algorithm. Fig. 6(¢} shows subdivided regions on the
boundary of the inner S-shape and 6(f) shows the extracted

pocket.
5.3 Mass Property Computation

Once a fshape and the cormresponding Scomplex are
given for a molecule, various analyses about the mass
properties on the molecule can be done rather easily and
efficiently. Volume and surface area of the union of spheres
can be efficiently computed by Bcomplex. Edelsbrunner
showed that the volume of the union of atoms can be
efficiently and correctly comptted by referring to the inter-
sections among atoms via the weighted o~complex when o
is zero [10]. Liang et al. applied this property to the molecular
volume and area computation [26]. Since the weighted a-
shape is identical with the fFshape when o= /=0, the same
method can be used with the Sshape. If the corresponding

(d)

(1)

Fig. 6. Pocket extraction procedure: {a) a protein (PDB ID: 1 fkg), (b) inner Ashape, (c) outer Sshape, (d) overlap of inner and outer £
shapes, (¢} subdivided regions on the houndary of the innerf-shape, and (f) extracted pocket.
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Table 2. The volume (unit: A%) and the surface arca (unit: A% of van der Waals models of the ten test proteins and their respective
computation time (unit: sec). (Environment: Intel 3.2 GHz CPU, 2GB RAM and Windows XP OS)

Model
legd lhpv 1f6o ke3> 2por
No. of atoms 604 1551 2154 2269 2306
Volume (A) 6,330.00 16,957.45 22.879.69 24,673.51 24923 43
Surf. area (B) 7.393.25 20,388.04 26,930.60 29.400.41 29.980.04
Comp, time (A) 0.0060 0.0110 0.0177 0.0200 0.0171
Comp. time (B) 0.0057 0.0109 0.0175 0.0198 0.0169
Acomplex is given, it can be used to compute the volume of References

the union of the van der Waals atoms of the molecule. The
topology information among the simplexes in the fshape
and Scomplex are used to sct up the set operations for the
computation. Table 2 shows the computation results of the
surface area and the volume of van der Waals models for the
protein and their respective computation times, Note (hat the
mumber of atoms are also given in the table. The computation
time was measured after the Sshapes and fcomplexes are
computed for the models.

6. Conclusions

In this paper, we discussed the Bshape and Scomplex
which generalize the well-known a~shape and e-complex
(also their weighted counterparts as well) for a set of spheres
with arbitrary sizes. Also, we showed that a number of
important bio-problems such as the molecular surface
construction, pocket extraction, and surface area and volume
computation of a molecule can be efficiently solved via the
concept of Fcomplex. After computing the Voronoi diagram
of spheres, we transform the Voronoi diagram to a quasi-
triangulation which is the topological dual of the Voronoi
diagram. Then, an analysis for Sintervals is done with the
quasi-triangulation to produce a simple rule to search in the
intervals to compute the ?-complex as well as the Sshape.

The quasi-triangulation can be computed from the Voronoi
diagram of spheres in O () time in the worst case. Then,
the presented theory and algorithms cnable us to compute
both Acomplex and Sshape from the sorted array of
simplexes in ( (log m + ) time in the worst case, where the
quasi-triangulation has m simplexes and the fcomplex or
Sshape has & simplexes, respectively.

Even though we mostly referred to applications for analyzng
the structure of molecules such as proteins, the theory of 4
shape and S-complex will be cqually useful for other areas
such as physics, chemistry, computcr graphics, and geometric
modeling where one of the furklamental issues is the proximity
among particles.
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