DOI QR코드

DOI QR Code

Electrical Properties of (Bi,Y)4Ti3O12 Thin Films Grown by RF Sputtering Method

  • Nam, Sung-Pill (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Sung-Gap (Dept. of Ceramic Engineering, Eng. Res. Insti., Gyeongsang National University) ;
  • Bae, Seon-Gi (Dept. of Electrical Engineering, University of Incheon) ;
  • Lee, Young-Hie (Dept. of Electronic Materials Engineering, Kwangwoon University)
  • Published : 2007.03.01

Abstract

Yttrium(Y)-substituted bismuth titanate $(Bi_{4-x},Y_x)Ti_3O_{12}$ [x=0, 0.25, 0.5, 0.75, 1](BYT) thin films were deposited using an RF sputtering method on the $Pt/TiO_2/SiO_2/Si$ substrates. The structural properties and electrical properties of yttrium-substituted $(Bi_4-xYx)Ti_3O_{12}$ thin films were analyzed. The remanent polarization of $(Bi_4-xYx)Ti_3O_{12}$ films increased with increasing Y-content. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films fabricated using a top Au electrode showed saturated polarization-electric field(P-E) switching curves with a remanent polarization(Pr) of $8{\mu}C/cm^2$ and coercive field (Ec) of 53 kV/cm at an applied voltage of 7 V. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films exhibited fatigue-free behavior up to $4.5{\times}10^{11}$ read/write switching cycles at a frequency of 1MHz.

Keywords

References

  1. H.M. Duiker, P.D. Cuchiaro, L.D. McMillian, 'Fatigue and switching in ferroelectric memories: Theory and experiment', J. Appl. Phys. 68 (1992) 5783
  2. C. A Paz de Araudjo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, 'Fatigue-Free Ferroelectric Capacitors with Platinum-Electrodes', Nature, 374 (1995) 627
  3. Wei Li, Jun Gu, Chunhua song, Dong Su, and Jinsong Zhu, 'B-site doping effect on ferroelectric property of bismuth titanate ceramic', J. Appl. Phys. 98, 114104 (2005)
  4. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J, W. Jo, 'Lanthanum-substituted bismuth titanate for use in non volatile memories', Nature 401 (1999) 682
  5. K.T. Kim, C.I. Kim, D.H. Kang, I.W. Shin, 'Characterization of BLT thin films using MgO buffer for MFIS-FET', Thin Solid Films 422 (2002) 230
  6. T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K. Saito, M. Osada, 'Large remanent polarization of $(Bi,Nd)_4Ti_3O_{12}$ epitaxial thin films grown by metaorganic chemical vapor deposition', Appl. Phys. Lett. 80 (2002) 2746 https://doi.org/10.1063/1.1468914
  7. Y. N. Oh, S.G. Yoon, Appl. 'Structural and ferroelectric properties of $(Bi,Ce)_4Ti_3O_{12}$ thin films grown by pulsed laser deposition for ferroelectric random access memories', Surface Science 227 (2004) 187 https://doi.org/10.1016/j.apsusc.2003.11.064
  8. Hiroshi Funakubo, Katsuyuki Ishikawa, Takayuki Watanabe, Masatoshi Mitsuya, Norimasa Nukaga, 'Preparation of bismuth layer-structured erroelectric thin films by MOCVD and their characterization', Adv. Mater. Opt. electronics, 10, (2000) 193
  9. Alan Snedden, Philip Lightfoot, Tim Dinges, and M. Saiful Islam, 'Defect and dopant properties of the Aurivillius phase $Bi_4Ti_3O_{12}$', J. Solid State Chem. 177 (2004) 3660 https://doi.org/10.1016/j.jssc.2004.06.012

Cited by

  1. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
  2. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  3. Effect of LaNiO3 electrode on microstructural and ferroelectric properties of Bi3.25Eu0.75Ti3O12 thin films vol.515, pp.20-21, 2007, https://doi.org/10.1016/j.tsf.2007.04.035
  4. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  5. Laser-Assisted Control of Electrical Oscillation in VO2Thin Films Grown by Pulsed Laser Deposition vol.51, pp.10R, 2012, https://doi.org/10.7567/JJAP.51.107302
  6. Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0904-2
  7. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
  8. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  9. Preparation and characteristics of Li4Ti5O12 with various dopants as anode electrode for hybrid supercapacitor vol.13, pp.7, 2013, https://doi.org/10.1016/j.cap.2013.04.002
  10. Study on the dielectric properties of Mg-doped NaBiTi${}_{6}{{\rm{O}}}_{14}$ ceramics* vol.26, pp.4, 2017, https://doi.org/10.1088/1674-1056/26/4/047701
  11. Ferroelectric properties of Bi3.25La0.75Ti3O12 films using HfO2 as buffer layers for nonvolatile-memory field-effect transistors vol.26, pp.5, 2008, https://doi.org/10.1116/1.2960555
  12. Photo-Assisted Electrical Oscillation in Two-Terminal Device Based on Vanadium Dioxide Thin Film vol.30, pp.16, 2012, https://doi.org/10.1109/JLT.2012.2199466
  13. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  14. Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics vol.58, 2014, https://doi.org/10.1016/j.materresbull.2014.04.057
  15. Thermally- or optically-biased memristive switching in two-terminal VO2 devices vol.14, pp.9, 2014, https://doi.org/10.1016/j.cap.2014.06.015
  16. Bidirectional laser triggering of planar device based on vanadium dioxide thin film vol.22, pp.8, 2014, https://doi.org/10.1364/OE.22.009016
  17. Photo-assisted bistable switching using Mott transition in two-terminal VO2 device vol.100, pp.1, 2012, https://doi.org/10.1063/1.3672812
  18. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  19. Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0905-1
  20. Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
  21. Fiber-optic hydrogen sensor based on polarization-diversity loop interferometer vol.62, pp.4, 2013, https://doi.org/10.3938/jkps.62.575
  22. Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor vol.9, pp.6, 2013, https://doi.org/10.1007/s13391-013-6032-4
  23. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  24. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15