Abstract
In hands-free full-duplex communication systems, acoustic signals picked up by the microphones can be mixed with echo signals as well as noises, which may result in poor performance of the corresponding communication system. Also, the system performance may decrease further if the reverberation occurs since it is harder to estimate the impulse response of the demixing system. For blind source separation (BSS) in such cases, a time-frequency masking approach can be employed to separate undesired echo signals and noises, but, permutation ambiguities also should be solved for the echo cancellation. In this paper, we propose a new acoustic echo cancellation (AEC) approach utilizing the time-frequency masking and higher-order statistics, whereby a desired signal selection, based on coherence and third-order statistics (i.e., kurtosis), is introduced along with output signal normalization. Simulation results demonstrate that the proposed approach yields better echo and noise cancellation performances than the conventional AEC approaches.