Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller

크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정

  • 최한호 (동국대 공대 전기공학과)
  • Published : 2007.03.01

Abstract

We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

Keywords

References

  1. V.I. Utkin, 'Variable structure systems with sliding modes,' IEEE Trans. Automat. Contr., vol. 22, pp. 212-222, 1977 https://doi.org/10.1109/TAC.1977.1101446
  2. S.M. Madani-Esfahani, M. Hached and S.H. Zak, 'Estimation of sliding mode domains of uncertain variable structure systems with bounded controllers,' IEEE Trans. Automat. Contr., vol. 35, pp. 446-449, 1990 https://doi.org/10.1109/9.52300
  3. H.H. Choi and M.J. Chung, 'Estimation of asymptotic stability region of uncertain systems with bounded sliding mode controllers,' IEEE Trans. Automat. Contr., vol. 39, pp. 2275-2278, 1994 https://doi.org/10.1109/9.333775
  4. 최한호, '크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정영역 추정값,' 제어자동화시스템 공학 논문지, 11권, pp. 492-495, 2005 https://doi.org/10.5302/J.ICROS.2005.11.6.492
  5. P.P. Khargonekar, I.R. Petersen, and K. Zhou, 'Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_{\infty}$ control theory ,' IEEE Trans. Automat. Contr., vol. 35, pp. 356-361, 1990 https://doi.org/10.1109/9.50357
  6. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in system and Control Theory, Philadelphia, SIAM, 1994
  7. Y. Orlov, 'Discontinuous unit feedback control of uncertain infinite dimensional systems', IEEE Trans. Automat. Contr., vol. 45, pp. 834-843, 2000 https://doi.org/10.1109/9.855545
  8. P. Gahinet, A Nemirovski and A.J. Laub, LMI Control Toolbox User's Guide, Natic, MA:The MathWorks Inc., 1995
  9. A.R. Galimidi, and B.R. Barmish, 'The constrained Lyapunov problem and its application to robust output feedback stabilization,' IEEE Trans. Automat. Contr., vol. 31, pp. 410-419, 1986 https://doi.org/10.1109/TAC.1986.1104288
  10. H.H. Choi, 'On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,' Automatica., vol. 35, pp, 1707-1715, 1999 https://doi.org/10.1016/S0005-1098(99)00081-3
  11. K.S. Kim and Y. Park, 'Parametric approaches to sliding mode design for linear multivariable systems,' Int. J. Control, automation, and Systems, vol.1 pp, 11-18, 2003
  12. T. Hu, and Z. Lin, 'An analysis and design method for linear systems subject to actuator saturation and disturbance,' Automatica, vol.38, pp. 351-359, 2002 https://doi.org/10.1016/S0005-1098(01)00209-6
  13. H. Fang, Z. Lin, and Y. Shamash, 'Disturbance tolerance and rejection of linear systems with imprecise knowledge of actuator input output characteristics,' Automatica, vol.42, pp. 1523-1530, 2006 https://doi.org/10.1016/j.automatica.2006.04.008
  14. 이재관, 최한호, '$C(s1-A)^{-1}$B가 최소위상이 될 LMI 조건을 이용한 해석과 설계,' 제어자동화시스템 공학 논문지, 11권, 11호, pp. 895-900, 2005 https://doi.org/10.5302/J.ICROS.2005.11.11.895