Characterization of Paraplantaricin C7, a Novel Bacteriocin Produced by Lactobacillus paraplantarum C7 Isolated from Kimchi

  • Lee, Kwang-Hee (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Park, Jae-Yong (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Jeong, Seon-Ju (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Kwon, Gun-Hee (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Lee, Hyong-Joo (Department of Food Science and Technology, Seoul National University) ;
  • Chang, Hae-Choon (Department of Food and Nutrition, Chosun University) ;
  • Chung, Dae-Kyun (Institute and Department of Genetic Engineering, Kyung Hee University) ;
  • Lee, Jong-Hoon (Department of Foods and Biotechnology, Kyunggi University) ;
  • Kim, Jeong-Hwan (Institute of Agriculture & Life Sciences, Gyeongsang National University)
  • Published : 2007.02.28

Abstract

A Lactobacillus paraplantarum strain producing a bacteriocin was isolated from kimchi using the spot-on-the lawn method and named L. paraplantarum C7 [15]. The bacteriocin, paraplantaricin C7, was found to inhibit certain Lactobacillus strains, including L. plantarum, L. pentosus, and L. delbrueckii subsp. lactis. It also inhibited Enterococcus faecalis, yet did not inhibit most of the other LAB (lactic acid bacteria) tested. The maximum level of paraplantaricin C7 activity was observed under the culture conditions of $25^{\circ}C$ and a constant pH of 4.5. Paraplantaricin C7 retained 90% of its activity after 10 min of treatment at $100^{\circ}C$ and remained stable within a pH range of 2-8. Based on a culture supernatant, paraplantaricin C7 was purified by DEAE-Sephacel column chromatography and $C_{18}$ reverse-phase HPLC. SDS-PAGE and activity staining were then conducted using the purified paraplantaricin C7, and its molecular mass determined to be about 3,800 Da. The 28 N-terminal amino acids from the purified paraplantaricin C7 were determined, and the structural gene encoding paraplantaricin C7, ppnC7, was cloned by PCR using degenerate primers based on the N-terminal amino acid sequence. The nucleotide sequences for ppnC7 and other neighboring orfs exhibited a limited homology to the previously reported plantaricin operon genes. Paraplantaricin C7 is a novel type II bacteriocin containing a double glycine leader sequence.

Keywords

References

  1. Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, N. Souther, A. Dobson, T. Duong, M. Callanan, S. Lick, A. Hamrick, R. Cano, and T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102: 3906- 3912
  2. Anderson, B. L., R. W. Berry, and A. Telser. 1983. A sodium dodecyl sulfate polyacrylamide gel electrophoresis system that separates peptides and proteins in the molecular weight range of 2,500 to 90,000. Anal. Biochem. 132: 365-375 https://doi.org/10.1016/0003-2697(83)90022-2
  3. Atrih, A., N. Rekhif, A. J. G. Moir, A. Lebrihi, and G. Lefebvre. 2001. Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int. J. Food Microbiol. 68: 93-104 https://doi.org/10.1016/S0168-1605(01)00482-2
  4. Benoit, V., A. Lebrihi, J.-B. Milliere, and G. Lefebvre . 1997. Purification and partial amino acid sequence of brevicin 27 a bacteriocin produced by Lactobacillus brevis SB27. Curr. Microbiol. 34: 173-179 https://doi.org/10.1007/s002849900164
  5. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2: 319-322 https://doi.org/10.1007/BF01569434
  6. Choi, Y.-O. and C. Ahn. 1997. Plasmid-associated bacteriocin production by Leuconostoc sp. LAB145-3A isolated from kimchi. J. Microbiol. Biotechnol. 7: 409-416
  7. Daeschel, M. 1992. Procedures to detect antimicrobial activities of microorganisms, pp. 57-80. In B. Ray and M. Daeschel (eds.), Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida, U.S.A
  8. Diep, D. B., L. S. Håvarstein, J. Nissen-Meyer, and I. F. Nes. 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60: 160-166
  9. Diep, D. B., L. S. Håvarstein, and I. F. Nes. 1996. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178: 4472-4483 https://doi.org/10.1128/jb.178.15.4472-4483.1996
  10. Erlend, L. A., D. B. Diep, I. F. Nes, V. G. H. Eijsink, and J. Nissen-Meyer. 1999. Antagonistic activity of Lactobacillus plantarum C11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269-2272
  11. Guyonnet, D., C. Fremaux, Y. Cenatiempo, and J. M. Berjeaud. 2000. Method for rapid purification of class IIa bateriocins and comparison of their activities. Appl. Environ. Microbiol. 66: 1744-1748 https://doi.org/10.1128/AEM.66.4.1744-1748.2000
  12. Ivanova, I., V. Miteva, T. Stefanova, A. Pantev, I. Budakov, S. Danova, P. Moncheva, I. Nikolova, X. Dousset, and P. Boyaval. 1998. Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int. J. Food Microbiol. 42: 147-158 https://doi.org/10.1016/S0168-1605(98)00067-1
  13. Kim, H. T., J.-Y. Park, G. G. Lee, and J. H. Kim. 2003. Isolation of a bacteriocin producing Lactobacillus plantarum strain from kimchi. Food Sci. Biotechnol. 12: 166-170
  14. Kim, Y.-C., E.-Y. Jung, E. H. Kim, D.-H. Jung, S.-H. Jung, D.-H. Yi, T.-J. Kwon, and S.-M. Kang. 1998. Properties of acid tolerance of acid-resistant mutant Leuconostoc mesenteroides which was improved as kimchi starter. Kor. J. Appl. Microbiol. Biotechnol. 26: 102-109
  15. Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from kimchi. J. Microbiol. Biotechnol. 15: 428-433
  16. Lee, K.-H., G.-S. Moon, J.-Y. An, H.-J. Lee, H. C. Chang, D. K. Chung, J.-H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12: 389-397
  17. Lee, S.-H., J.-S. Choi, K. N. Park, Y. S. Im, and W.-J. Choi. 2002. Effects of Prunus mume sie. Extract on growth of lactic acid bacteria isolated from kimchi and preservation of kimchi. Kor. J. Food Preser. 9: 292-297
  18. Maldonado, A., R. Jiménez-Díaz, and J. L. Ruiz-Barba. 2004. Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific Gram-positive bacteria is mediated by an autoinduction mechanism. J. Bacteriol. 186: 1556-1564 https://doi.org/10.1128/JB.186.5.1556-1564.2004
  19. Moll, G. N., W. N. Konings, and A. J. M. Driessen. 1999. Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie Van Leewenhoek 76: 185- 198 https://doi.org/10.1023/A:1002002718501
  20. Moon, G.-S., C.-H. Kang, Y.-R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924- 931
  21. Moon, Y.-J., S. Park, and C.- K. Sung. 2003. Effects of ethanolic extract of Schizandra chinensis for the delayed ripening kimchi preparation. Kor. J. Food Nutr. 16: 7-14
  22. Park, J. Y., J. S. Park, J. H. Kim, S. J. Jeong, J. Y. Chun, J. H. Lee, and J. H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 749-755
  23. Park, J. Y., S. J. Jeong, J. Y. Chun, J. H. Lee, D. K. Chung, and J. H. Kim. 2006. Characterization of ptsHI operon from Leuconostoc mesenteroides SY1, a strain isolated from kimchi. J. Microbiol. Biotechnol. 16: 988-992
  24. Ross, R. P., M. Galvin, O. McAuliffe, S. M. Morgan, M. P. Ryan, D. P. Twomey, W. J. Meaney, and C. Hill. 1999. Developing applications for lactococcal bacteriocins. Antonie Van Leewenhoek 76: 337-346 https://doi.org/10.1023/A:1002069416067
  25. Tichaczek, P. S., R. F. Vogel, and W. P. Hammes. 1994. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 140: 361-367 https://doi.org/10.1099/13500872-140-2-361
  26. van Reenen, C. A., M. L. Chikindas, W. H. Van Zyl, and L. M. T. Dicks. 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int. J. Food Microbiol. 81: 29-40 https://doi.org/10.1016/S0168-1605(02)00164-2