Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun (Department of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Min-Kyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Jae-Hyung (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Mi-Hwa (Biontech Co. Byucksan Digital Valley) ;
  • Cho, Jae-Chang (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Kim, Tae-Sung (Ecosystem Disturbance Assessment Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Kim, Tae-San (Genetic Resources Division, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.02.28

Abstract

Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipmann. 1990. Basic local alignment tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 169
  3. APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC, U.S.A
  4. Bakken, L. R. and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13: 103-114 https://doi.org/10.1007/BF02011247
  5. Bitton, G. 1994. Wastewater Microbiology. Wiley-Liss, New York, U.S.A
  6. Butterfield, C. T. 1935. Studies of sewage purification. II. A Zoogloea-forming bacterium isolated from activated sludge. U.S. Pub. Health Rep. 50: 671-684 https://doi.org/10.2307/4581541
  7. Chen, J. J., D. McCarty, D. Slack, and H. Rundle. 2000. Fullscale studies of a simplified aerated filter (BAF) for organics and nitrogen removal. Wat. Sci. Tech. 41: 1-4
  8. Cho, M. J., Y. K. Kim, and J. O. Ka. 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14: 599-606
  9. Curtis, T. P. and N. G. Craine. 1998. The comparison of the diversity of activated sludge plants. Water Sci. Technol. 37: 71-78
  10. Eichner, C. A., R. W. Erb, K. N. Timmis, and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109
  11. Elefsiniotisa, P. and D. Lib. 2006. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem. Engin. J. 28: 148-155 https://doi.org/10.1016/j.bej.2005.10.004
  12. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 166-170
  13. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346
  14. Gujer, W. and D. Jenkins. 1975. A nitrification model for the contact stabilization activated sludge process. Wat. Res. 9: 561-566 https://doi.org/10.1016/0043-1354(75)90082-2
  15. Hengstmann, U., K.-J. Chin, P. H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65: 5050-5058
  16. Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376
  17. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, S. J. Kweon, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  18. Kim, T. S., M. S. Kim, M. K. Jung, J. H. Ahn, M. J. Joe, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  19. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
  20. Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497
  21. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England
  22. Lu, F., J. Lukasik, and S. R. Farrah. 2001. Immunological methods for the study of Zoogloea strains in natural environments. Wat. Res. 17: 4011-4018
  23. Lyautey, E., B. Lacoste, L. Ten-Hage, J.-L. Rols, and F. Garabetian. 2005. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: Methodological settings and fingerprints interpretation. Wat. Res. 39: 380- 388 https://doi.org/10.1016/j.watres.2004.09.025
  24. Ministry of Environment (Korea). 2006. Water Environment Preservation Act (The Act, the Enforcement Ordinance, and the Enforcement Regulations), pp. 13
  25. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  26. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141 https://doi.org/10.1023/A:1000669317571
  27. Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203 https://doi.org/10.1016/S0167-7012(02)00026-X
  28. Norris, T. B., J. M. Wraith, R. W. Castenholz, and T. R. McDermott. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68: 6300-6309 https://doi.org/10.1128/AEM.68.12.6300-6309.2002
  29. Ohashi, A., D. G. Viraj de Silva, V. Mobarry, J. A. Manem, D. A. Stahl, and B. E. Rittmann. 1995. Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Wat. Sci. Tech. 2: 75-84
  30. Quana, Z. X., Y. S. Jina, C. R. Yinb, J. J. Lee, and S. T. Lee. 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresour. Technol. 96: 1690- 1695 https://doi.org/10.1016/j.biortech.2004.12.033
  31. Rho, S. C., N. H. An, D. H. Ahn, K. H. Lee, D. H. Lee, and D. J. Jahng. 2005. PCR-T-RFLP analyses of bacterial communities in activated sludges in the aeration tanks of domestic and industrial wastewater treatment plants. J. Microbiol. Biotechnol. 15: 287-295
  32. Rotthauwe, J.-H., K.-P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712
  33. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, 2nd Ed. Cold Spring Harbor Laboratory Press, U.S.A
  34. Swofford, D. L. 2002. PAUP: Phylogenetic analysis using parsimony, version 4.0. Computer program distributed by Sinauer Associates, Sunderland, Massachusetts, U.S.A
  35. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  36. Unz, R. F. and N. C. Dondero. 1967. The predominant bacteria in natural zoogloeal colonies I. Isolation and identification. Can. J. Microbiol. 13: 1671-1682 https://doi.org/10.1139/m67-217
  37. van Elsas, J. D., G. F. Duarte, A. S. Rosado, and K. Smalla. 1998. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J. Microbiol. Methods 32: 133-154 https://doi.org/10.1016/S0167-7012(98)00025-6
  38. Weaver, R. W., J. S. Angle, and P. S. Bottomley. 1994. Methods of Soil Analysis Part-2: Microbiological and Biochemical Properites, pp. 74-75, 161-163, and 251-253. The Soil Science Society of America, Inc, U.S.A
  39. Yum, K. J., J. H. Lee, S. M. Kim, and W. S. Choi. 2002. Treatment kinetics of wastewater and morphological characteristics of biofilm in up-flow Biobead process. J. Kor. Soc. Wat. Qual. 10: 201-212
  40. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616