Molecular Parameters for Assessing Marine Biotoxicity: Gene Expressions of Rockfish (Sebastes schlegeli) Exposed to Polycyclic Aromatic Hydrocarbons

  • Woo, Seon-Ock (Southern Coastal Environment Research Division, Korea Ocean Research and Development Institute) ;
  • Yum, Seung-Shic (Southern Coastal Environment Research Division, Korea Ocean Research and Development Institute) ;
  • Park, Hong-Seog (Genome Research Center, Korea Research Institute of Bioscience and Technology) ;
  • Jung, Jee-Hyun (Southern Coastal Environment Research Division, Korea Ocean Research and Development Institute) ;
  • Lee, Suk-Chan (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, So-Jung (Gyeongbuk Institute for Marine Bioindustry) ;
  • Lee, Taek-Kyun (Southern Coastal Environment Research Division, Korea Ocean Research and Development Institute)
  • Published : 2007.12.31

Abstract

Environmental and anthropogenic changes affect the health and stability of marine ecosystem. In this study we aimed to identify molecular biomarkers for ecotoxicological pollutants risk assessment in the rockfish (Sebastes schlegeli). We designed primers based on conserved sequences by multiple alignments of target genes from related species, and cloned the partial cDNAs of cytochrome P450 (CYP1A1), glutathione S-transferase (GST), metallothionein (MT), superoxide dismutase (SOD), ubiquitin (UB), vitellogenin (VTG) and $\beta$-actin by reverse transcription polymerase chain reaction (RT-PCR) from S. schlegeli. Northern blot results indicated that these six genes expressions were significantly induced by benzo[a]pyrene (BaP, 1 ${\mu}M$) and that the level of each of their transcripts increased in BaP-exposed rockfish in a time-dependent manner. This study suggests that transcriptional changes in these six genes may be used for monitoring environmental exposure to polycyclic aromatic hydrocarbons (PAHs).

Keywords

References

  1. Manduzio, H. et al. Characterization of an inducible isoform of the Cu/Zn superoxide dismutase in the blue mussel Mytilus edulis. Aquat Toxicol 64:73-83 (2003) https://doi.org/10.1016/S0166-445X(03)00026-2
  2. Knigge, T., Monsinjon, T. & Andersen, O. K. Surface -enhanced laser desorption/ionization-time of flightmass spectrometry approach to biomarker discovery in blue mussels (Mytilus edulis) exposed to polyaromatic hydrocarbons and heavy metals under field conditions. Proteomics 4:2722-2727 (2004) https://doi.org/10.1002/pmic.200300828
  3. Frenzilli, G. et al. DNA damage in eelpout (Zoarces viviparus) from Goteborg harbour. Mutat Res 552: 187-195 (2004) https://doi.org/10.1016/j.mrfmmm.2004.06.018
  4. Kirso, U. E., Pashin, I., Bakhitova, L. M. & Kiung, A. I. Effect of antioxidants on the carcinogenic and mutagenic activity of benzo[a]pyrene. Vopr Onkol 31:70-75 (1985)
  5. Stegeman, J. J. & Kloepper-Sams, P. J. Cytochrome P-450 isozymes and mono-oxygenase activity in aquatic animals. Environ Health Perspect 71:87-95 (1987) https://doi.org/10.2307/3430416
  6. Shaw, J. P., Peters, L. D. & Chipman, J. K. CYP1Aand CYP3A-immunopositive protein levels in digestive gland of the mussel Mytilus galloprovincialis from the Mediterranean Sea. Mar Environ Res 58:649-653 (2004) https://doi.org/10.1016/j.marenvres.2004.03.056
  7. Miller, K. A., Addison, R. F. & Bandiera, S. M. Hepatic CYP1A levels and EROD activity in English sole: biomonitoring of marine contaminants in Vancouver Harbour. Mar Environ Res 57:37-54 (2004) https://doi.org/10.1016/S0141-1136(03)00059-X
  8. Boon, J. et al. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures: absence of short-term responses. Mar Environ Res 54:719-724 (2002) https://doi.org/10.1016/S0141-1136(02)00127-7
  9. Sies, H. Glutathione and its role in cellular functions. Free Radic Biol Med 27:916-921 (1999) https://doi.org/10.1016/S0891-5849(99)00177-X
  10. Canpolat, E. & Lynes, M. In vivo manipulation of endogenous metallothionein with a monoclonal antibody enhances a T-dependent humoral immune response. Toxicol Sci 62:61-70 (2001) https://doi.org/10.1093/toxsci/62.1.61
  11. Klaassen, C. D., Liu, J. & Choudhrui, S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267-294 (1999) https://doi.org/10.1146/annurev.pharmtox.39.1.267
  12. Jenny, M. J. et al. Diversity of metallothioneins in the American oyster, Crassostrea virginica, revealed by transcriptomic and proteomic approaches. Eur J Biochem 271:1702-1712 (2004) https://doi.org/10.1111/j.1432-1033.2004.04071.x
  13. Manduzio, H. et al. Seasonal variations in antioxidant defenses in blue mussels Mytilus edulis collected from a polluted area: major contributions in gills of an inducible isoform of Cu/Zn-superoxide dismutase and of glutathione S-transferase. Aquat Toxicol 70:83-93 (2004) https://doi.org/10.1016/j.aquatox.2004.07.003
  14. Fridovich, I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97-112 (1995) https://doi.org/10.1146/annurev.bi.64.070195.000525
  15. Ciechanover, A., Orian, A. & Schwartz, A. Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssay 22:442-451 (2000) https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
  16. Glickman, M. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:73-428 (2002)
  17. Jensen, J. P. et al. Identification of a family of closely related human ubiquitin conjugating enzymes. J Biol Chem 270:30408-30414 (1995) https://doi.org/10.1074/jbc.270.51.30408
  18. Hicke, L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. Faseb J 11:1215-1226 (1997) https://doi.org/10.1096/fasebj.11.14.9409540
  19. Pakdel, F. et al. Overexpression of rainbow trout estrogen receptor domains in Escherichia coli: characterization and utilization in the production of antibodies for immunoblotting and immunocytochemistry. Mol Cell Endocrinol 104:81-93 (1994) https://doi.org/10.1016/0303-7207(94)90054-X
  20. Kime, D. A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ 225:3-11 (1999) https://doi.org/10.1016/S0048-9697(98)00328-3
  21. Nimrod, A. C. & Benson, W. H. Environmental estrogenic effects of alkylphenol ethoxylates. Criti Rev Toxicol 26:335-364 (1996) https://doi.org/10.3109/10408449609012527
  22. Allen, Y. et al. The extent of oestrogenic contamination in the UK estuarine and marine environmentsfurther surveys of flounder. Sci Total Environ 233:5-20 (1999) https://doi.org/10.1016/S0048-9697(99)00175-8
  23. Matthiessen, P. et al. The impact of oestrogenic and androgenic contamination on marine organisms in the United Kingdom-summary of the EDMAR programme. Endocrine disruption in the marine environment. Mar Environ Res 54:645-649 (2002) https://doi.org/10.1016/S0141-1136(02)00135-6