Endocrine Disrupting Organotin Compounds are Potent Inducers of Imposex in Gastropods and Adipogenesis in Vertebrates

  • Iguchi, Taisen (Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, the Graduate University for Advanced Studies) ;
  • Katsu, Yoshinao (Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, the Graduate University for Advanced Studies) ;
  • Horiguchi, Toshihiro (Core Research for Evolutional Science and Technology Science and Technology Corporation) ;
  • Watanabe, Hajime (Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, Faculty of Life Science, the Graduate University for Advanced Studies) ;
  • Blumberg, Bruce (Department of Developmental and Cell Biology, University of California Irvine) ;
  • Ohta, Yasuhiko (Core Research for Evolutional Science and Technology Science and Technology Corporation)
  • Published : 2007.03.31

Abstract

The persistent and ubiquitous environmental contaminant, tributyltin chloride (TBT), induces not only imposex in gastropods but also the differentiation of adipocytes in vitro and increases adipose mass in vivo in vertebrates. TBT is a nanomolar affinity ligand for retinoid X receptor (RXR) in the rock shell(Thais clavigera) and for both the RXR and the peroxisome proliferator activated receptor $\gamma(PPAR\gamma)$ in the amphibian (Xenopus laevis), mouse, and human. The molecular mechanisms underlying induction of imposex by TBT have not been clarified, though several hypotheses are proposed. TBT promotes adipogenesis in the murine 3T3-L1 cell model and perturbs key regulators of adipogenesis and lipogenic pathways in vivo primarily through activation of RXR and $PPAR\gamma$. Moreover, in utero exposure to TBT leads to strikingly elevated lipid accumulation in adipose depots, liver, and testis of neonate mice and results in increased adipose mass in adults. In X. laevis, ectopic adipocytes form in and around gonadal tissues following organotin, RXR or $PPAR\gamma$ ligand exposure. TBT represents the first example of an environmental endocrine disrupter that promotes adverse effects from gastropods to mammals.

Keywords

References

  1. Appel, K. E. Organotin compounds: toxicokinetics aspects. Drug Metab. Rev. 36:763-786 (2004) https://doi.org/10.1081/DMR-200033490
  2. Golub, M. & Doherty, J. Triphenyltin as a potential human endocrine disruptor. J. Toxicol. Environ. Health B. Crit. Rev. 7:282-295 (2004)
  3. Blaber, S. J. M. The occurrence of a penis-like outgrowth behind the right tentacle in spent females of Nucella lapillus. Proc. Malacolog. Soc. London 39: 231-233 (1970)
  4. Gibbs, P. & Bryan, G. Reproductive failure in populations of the dog-whelk, Nucella lapillus, caused by imposex induced by tributyltin from antifoulding paints. J. Marine Biol. Assoc. UK 66:767-777 (1986) https://doi.org/10.1017/S0025315400048414
  5. Horiguchi, T. et al. Impact of tributyltin and triphenyltin on ivory schell (Babylonia japonica) populations. Environ. Health Perspect. 114:Suppl. 1, 13-19 (2006) https://doi.org/10.1289/ehp.114-a13
  6. Shimazaki, Y. et al. Tributyltin causes masculization in fish. Environ. Toxicol. Chem. 22:141-144 (2003) https://doi.org/10.1897/1551-5028(2003)022<0141:TCMIF>2.0.CO;2
  7. McAllister, B. G. & Kime, D. E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinization and irreversible sperm damage in zebrafish( Danio rerio). Aquat. Toxicol. 65:309-316 (2003) https://doi.org/10.1016/S0166-445X(03)00154-1
  8. Omura, M. et al. Two-generation reproductive toxicity study of tributyltin chloride in male rats. Toxicol. Sci. 64:224-232 (2001) https://doi.org/10.1093/toxsci/64.2.224
  9. Ogata, R. et al. Two-generation reproductive toxicity study of tributyltin chloride in female rats. J. Toxicol. Environ. Health A 63:127-144 (2001) https://doi.org/10.1080/15287390151126469
  10. Boyer, I. J. Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology 55:253-298 (1989) https://doi.org/10.1016/0300-483X(89)90018-8
  11. Heidrich, D. D. et al. Inhibition of human cytochrome P450 aromatase activity by butyltins. Steroids 66: 763-769 (2001) https://doi.org/10.1016/S0039-128X(01)00108-8
  12. Cooke, G. M. Effect of organotins on human aromatase activity in vitro. Toxicol. Lett. 126:121-130 (2002) https://doi.org/10.1016/S0378-4274(01)00451-9
  13. Powers, M. F. & Beavis A. D. Triorganotins inhibit the mitochondrial inner membrane anion channel. J. Biol. Chem. 266:17250-17256 (1991)
  14. Gennari, A. et al. Organotins induce apoptosis by disturbance of [Ca2+] and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol. Appl. Pharmacol. 169:185- 190 (2000) https://doi.org/10.1006/taap.2000.9076
  15. Philbert, M. A. et al. Mechanisms of injury in the central nervous system. Toxicol. Pathol. 28:43-53 (2000) https://doi.org/10.1177/019262330002800107
  16. Horiguchi, T. et al. Imposex in sea snails, caused by organotin (tributyltin and triphenyltin) pollution in Japan: a survey. Appl. Organomet. Chem. 11:451-455 (1997) https://doi.org/10.1002/(SICI)1099-0739(199705)11:5<451::AID-AOC598>3.0.CO;2-#
  17. Horiguchi, T. Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ. Sci. 13:77- 87 (2006)
  18. Bryan, G. W. et al. The decline of the gastropod Nucella lapillus around south-west England: evidence for the effect of tributyltin from antifouling paints. J. Mar. Biol. Assoc. UK 66:611-640 (1986) https://doi.org/10.1017/S0025315400042247
  19. Bryan, G. W. et al. The effects of tributyltin (TBT) accumulation on adult dogwhelks, Nucella lapillus: long-term field and laboratory experiments. J. Mar. Biol. Assoc. UK 67:525-544 (1987) https://doi.org/10.1017/S0025315400027272
  20. Bryan, G. W. et al. A comparison of the effectiveness of tri-n-butyltin chloride and five other organotin compounds in promoting the development of imposex in the dog-whelk, Nucella lapillus. J. Mar. Biol. Assoc. UK 68:733-744 (1988) https://doi.org/10.1017/S0025315400028836
  21. Gibbs, P. E. et al. The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. J. Mar. Biol. Assoc. UK. 67:507-523 (1987) https://doi.org/10.1017/S0025315400027260
  22. Gibbs, P. E. et al. Sex change in the female dogwhelk, Nucella lapillus, induced by tributyltin from antifouling paints. J. Mar. Biol. Assoc. UK. 68:715- 731 (1988) https://doi.org/10.1017/S0025315400028824
  23. Horiguchi, T. et al. Imposex and organotin compounds in Thais clavigera and T. bonni in Japan. J. Mar. Biol. Assoc. UK 74:651-669 (1994) https://doi.org/10.1017/S002531540004772X
  24. Horiguchi, T. et al. Effects of tripheyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environ. Pollut. 95:85-91 (1997) https://doi.org/10.1016/S0269-7491(96)00093-0
  25. Oehlmann, J. et al. Tributyltin (TBT) effects on Ocinebrina aciculate (Gastropoda: Muricidae): imposex development, sterilization, sex change, and population decline. Sci. Total Environ. 188:205-223 (1996) https://doi.org/10.1016/0048-9697(96)05173-X
  26. Schulte-Oehlmann, U. et al. Imposex and reproductive failure in Hydrobia ulvae (Gastropoda: Prosobrahchia). Mar. Biol. 128:257-266 (1997) https://doi.org/10.1007/s002270050090
  27. Matthiessen, P. & Gibbs, P. E. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environ. Toxicol. Chem. 17:37- 43 (1998) https://doi.org/10.1897/1551-5028(1998)017<0037:CAOTEF>2.3.CO;2
  28. Bettin, C. et al. TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgol. Meeresunters. 50:299-317 (1996) https://doi.org/10.1007/BF02367105
  29. Santos, M. M. et al. New insights into the mechanism of imposex induction in the dogwelk Nucella lapillus. Comp. Biochem. Physiol. C 141:101-109 (2005)
  30. Spooner, N. et al. The effect of tributyltin upon steroid titres in the female dogwhelk, Nucella lapillus, and the development of imposex. Mar. Environ. Res. 32:37-49 (1991) https://doi.org/10.1016/0141-1136(91)90032-4
  31. Ronis, M. J. J. & Mason, A. Z. The metabolism of testosterone by the periwinkle (Lottorina littorea) in vitro and in vivo: effects of tributyltin. Mar. Environ. Res. 42:161-166 (1996) https://doi.org/10.1016/0141-1136(95)00069-0
  32. Feral, C. & Le Gall, S. The influence of a pollutant factor (TBT) on the neurosecretory mechanism responsible for the occurrence of a penis in the females of Ocenebra erinacea. In. Lever, J. & Boer, H. H. (eds.) Molluscan Neuro-Endocrinology. North Holland Publishing, Amsterdam, pp. 173-175 (1983)
  33. Oberdorster, E. & McClellan-Green, P. The neuropeptide APGWamide induces imposex in the mud snail Ilyanassa obsoleta. Peotides 21:1323-1330 (2000) https://doi.org/10.1016/S0196-9781(00)00274-6
  34. Oberdorster, E. & McClellan-Green, P. Mechamism of imposex induction in mud snail, Ilyanassa obsolete: TBT as a neurotoxin and aromatase inhibitor. Mar. Environ. Res. 54:715-718 (2002) https://doi.org/10.1016/S0141-1136(02)00118-6
  35. Nishikawa, J. et al. Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ. Sci. Technol. 38: 6271-6276 (2004) https://doi.org/10.1021/es049593u
  36. Chang, X. et al. Two types of aromatase with different encoding genes, tissue distribution and developmental expression in Nile tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol. 141:101-115 (2005) https://doi.org/10.1016/j.ygcen.2004.11.020
  37. Kajiwara, M. et al. Tissue preferential expression of estrogen receptor gene in the marine snail, Thais clavigera. Gen. Comp. Endocrinol. 148:315-326 (2006) https://doi.org/10.1016/j.ygcen.2006.03.016
  38. Krust, A. et al. The chicken oestrogen receptor sequence: homology with v-erb-A and the human oestrogen and glucocorticoid receptor. EMBO J. 5:891-897 (1986)
  39. Umesono, K. & Evans, R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139-1146 (1989) https://doi.org/10.1016/0092-8674(89)90051-2
  40. Mader, S. et al. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 338:271-274 (1989) https://doi.org/10.1038/338271a0
  41. Danielian, P. S. et al. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025-1033 (1992)
  42. Fujita, T. et al. Full activation of estrogen receptor activation function-1 induces proliferation of breast cancer cells. J. Biol. Chem. 278:26704-26714 (2003) https://doi.org/10.1074/jbc.M301031200
  43. Green, S. & Chambon, P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 4:309-314 (1988) https://doi.org/10.1016/0168-9525(88)90108-4
  44. Atanaskova, N. et al. MAP kinase/estrogen receptor cross-talk enhances estrogen-mediated signaling and tumor growth but does not confer tamoxifen resistance. Oncogene 21:4000-4008 (2002) https://doi.org/10.1038/sj.onc.1205506
  45. Kumar, V. et al. Functional domains of the human estrogen receptor. Cell 51:941-951 (1987) https://doi.org/10.1016/0092-8674(87)90581-2
  46. Metzger, D. et al. Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J. Biol. Chem. 270:9535-9542 (1995) https://doi.org/10.1074/jbc.270.16.9535
  47. Lopez, G. N. et al. Titration by estrogen receptor activation function-2 of targets that are downstream from coactivators. Mol. Endocrinol. 13:897-909 (1999) https://doi.org/10.1210/me.13.6.897
  48. Kobayashi, Y. et al. p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J. Biol. Chem. 275:15645-15651 (2000) https://doi.org/10.1074/jbc.M000042200
  49. McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465-474 (2002) https://doi.org/10.1016/S0092-8674(02)00641-4
  50. Hermanson, O. et al. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol. Metab. 13:55-60 (2002) https://doi.org/10.1016/S1043-2760(01)00527-6
  51. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384:641-643 (1996) https://doi.org/10.1038/384641a0
  52. Spencer, T. E. et al. Steroid receptor coactivatoe-1 is a histone acetyltransferase. Nature 389:194-198 (1997) https://doi.org/10.1038/38304
  53. McDonnell, D. P. & Norris, J. D. Connections and regulation of the human estrogen receptor. Science 296:1642-1644 (2002) https://doi.org/10.1126/science.1071884
  54. Smith, C. L. & O'Malley, B. W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25:45-71 (2004) https://doi.org/10.1210/er.2003-0023
  55. Benecke, A. et al. Synergy between estrogen receptor alpha activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. EMBO Rep. 1: 151-157 (2000) https://doi.org/10.1093/embo-reports/kvd028
  56. Mu, Y. M. et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulose cells. Biochem. Biophys. Res. Commun. 271:710-713 (2000) https://doi.org/10.1006/bbrc.2000.2701
  57. Mu, Y. M. et al. Combined treatment with specific ligands for PPAR$\gamma$ : RXR nuclear receptor system markedly inhibits the expression of cytochrome P450arom in human granulose cancer cells. Mol. Cell. Endocrinol. 181:239-248 (2001) https://doi.org/10.1016/S0303-7207(00)00457-3
  58. Saitoh, M. et al. Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN. Biochem. Biophys. Res. Commun. 289: 198-204 (2001) https://doi.org/10.1006/bbrc.2001.5952
  59. Grun, F. et al. Endocrine disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 20:2141-2155 (2006) https://doi.org/10.1210/me.2005-0367
  60. Auwerx, J. PPAR$\gamma$, the ultimate thrifty gene. Diabetologia 42:1033-1049 (1999) https://doi.org/10.1007/s001250051268
  61. Ferre, P. The biology of peroxisome proliferatorsactivated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl. 1): S43-S50 (2004) https://doi.org/10.2337/diabetes.53.2007.S43
  62. Day, C. Thiazolidinediones: a new classof antidiabetic drugs. Diabet. Med. 16:179-192 (1999) https://doi.org/10.1046/j.1464-5491.1999.00023.x
  63. Hallakou, S. et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 46:1393-1399 (1997) https://doi.org/10.2337/diabetes.46.9.1393
  64. de Souza, C. J. et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50:1863-1871 (2001) https://doi.org/10.2337/diabetes.50.8.1863
  65. Hill, J. O. & Peters, J. C. Environmental contributions to the obesity epidemic. Science 280:1371-1374 (1998) https://doi.org/10.1126/science.280.5368.1371
  66. Barker, D.J. et al. Fetal and placental size and risk of hypertension in adult life. Br. Med. J. 301:259-262 (1990) https://doi.org/10.1136/bmj.301.6746.259
  67. Phillips, D. I. et al. Fetal growth and insulin secretion in adult life. Diabetologia 37:592-596 (1994) https://doi.org/10.1007/BF00403378
  68. Martyn, C. N. et al. Growth in utero, adult blood pressure, and arterial compliance. Br. Heart J. 73:116- 121 (1995) https://doi.org/10.1136/hrt.73.2.116
  69. Yajnik, C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc. Nutr. Soc. 59:257-265 (2000)
  70. Barker, D. J. et al. Growth in utero and serum cholesterol concentrations in adult life. Br. Med. J. 307: 1524-1527 (1993) https://doi.org/10.1136/bmj.307.6918.1524
  71. Lucas, A. Programming by early nutrition: an experimental approach. J. Nutr. 128:401S-406S (1998) https://doi.org/10.1093/jn/128.2.401S
  72. Armitage, J. A. et al. Developmental programming of metabolic syndrome by maternal nutritional imbalance; how strong is the evidence from experimental models in mammlas? J. Physiol. 561:355-377 (2004) https://doi.org/10.1113/jphysiol.2004.072009
  73. Masuno, H. et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid Res. 43:676-684 (2002)
  74. Masuno, H. et al. Effect of 4-nonylphenol on cell proliferation and adipocyte formation in cultures of fully differentiated 3T3-L1 cells. Toxicol. Sci. 75: 314-320 (2003) https://doi.org/10.1093/toxsci/kfg203
  75. Toschke, A. M. et al. Childhood obesity is associated with maternal smoking in pregnancy. Eur. J. Pediatr. 161:445-448 (2002) https://doi.org/10.1007/s00431-002-0983-z
  76. von Kries, R., Toschke, A. M., Koletzko, B. & Slikker, Jr. W. Maternal smoking during pregnancy and child-hood obesity. Am. J. Epidemiol. 156:954- 961 (2002) https://doi.org/10.1093/aje/kwf128
  77. Oken, E. et al. Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes. Res. 13:2021-2028 (2005) https://doi.org/10.1038/oby.2005.248
  78. Power, C. & Jefferis, B. J. Fetal environment and subsequent obesity: a study of maternal smoking. Int. J. Epidemiol. 31:413-419 (2002) https://doi.org/10.1093/ije/31.2.413
  79. Hill, S. Y. et al. Offspring from families at high risk for alcohol dependence: increased body mass index in association with prenatal exposure to cigarettes but not alcohol. Psychiatry Res. 135:203-216 (2005) https://doi.org/10.1016/j.psychres.2005.04.003